The ascent of large gas bubbles (slugs) in vertical cylindrical conduits and low-viscosity magmas is simulated using 1D mathematical and 3D computational fluid dynamic (CFD) models. Following laboratory evidence, the 1D model defines a constant rise velocity for the slug base and allows gas expansion to accelerate the slug nose through the overlying fluid during ascent. The evolution of rapidly expanding gas slugs observed in laboratory experiments is reproduced well and, at volcano scales, predicts at-surface overpressures of several atmospheres without requiring any initial overpressure at depth. The near-surface dynamics increase slug nose velocities through the overlying magma by a factor of c. 2.5 and the gas expansion results in pre-burst magma surface velocities of c. 35 m s−1. To examine pressure distributions and the forces exerted on a conduit, 3D CFD simulations were carried out. At volcano scales, the vertical single forces during final slug ascent to the surface are c. 106 N, two orders of magnitude smaller than those associated with very-long-period seismic events at Stromboli. This supports a previous interpretation of these events in which they are generated by gas slugs flowing through changes in conduit geometry, rather than being the direct result of slug eruption processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.