) summit eruptive activity at Kilauea Volcano is characterized by explosive degassing bursts accompanied by very long period (VLP) seismic signals. We model the source mechanisms of VLP signals in the 10-50 s band using data recorded for 15 bursts with a 10-station broadband network deployed in the summit caldera. To determine the source centroid location and source mechanism, we minimize the residual error between data and synthetics calculated by the finite difference method for a point source embedded in a homogeneous medium that takes topography into account. The VLP signals associated with the bursts originate in a source region ∼1 km below the eastern perimeter of Halemaumau pit crater. The observed waveforms are well explained by the combination of a volumetric component and a vertical single force component. For the volumetric component, several source geometries are obtained which equally explain the observed waveforms. These geometries include (1) a pipe dipping 64°t o the northeast; (2) two intersecting cracks including an east striking crack (dike) dipping 80°to the north, intersecting a north striking crack (another dike) dipping 65°to the east; (3) a pipe dipping 58°to the northeast, intersecting a crack dipping 48°to the westsouthwest; and (4) a pipe dipping 57°to the northeast, intersecting a pipe dipping 58°to the west-southwest. Using the dual-crack model as reference, the largest volume change obtained among the 15 bursts is ∼24,400 m 3 , and the maximum amplitude (peak to peak) of the force is ∼20 GN. Each burst is marked by a similar sequence of deflation and inflation, trailed by decaying oscillations of the volumetric source. The vertical force is initially upward, synchronous with source deflation, then downward, synchronous with source reinflation, followed by oscillations with polarity opposite to the volumetric oscillations. This combination of force and volume change is attributed to pressure and momentum changes induced during a fluid dynamic source mechanism involving the ascent, expansion, and burst of a large slug of gas within the upper ∼150 m of the magma conduit. As the slug expands upon approach to the surface and more liquid becomes wall supported by viscous shear forces, the pressure below the slug decreases, inducing conduit deflation and an upward force on the Earth. The final rapid slug expansion and burst stimulate VLP and LP oscillations of the conduit system, which slowly decay due to viscous dissipation and elastic radiation. Consideration of the fluid dynamic arguments leads us to prefer the dual-crack VLP source model as it is the only candidate model capable of producing plausible values of length scales and pressure changes. The magnitudes of the vertical forces observed in the 15 bursts appear consistent with slug masses of 10 4 to 10 6 kg.Citation: Chouet, B. A., P. B. Dawson, M. R. James, and S. J. Lane (2010), Seismic source mechanism of degassing bursts at Kilauea Volcano, Hawaii: Results from waveform inversion in the 10-50 s band,
The ascent of large gas bubbles (slugs) in vertical cylindrical conduits and low-viscosity magmas is simulated using 1D mathematical and 3D computational fluid dynamic (CFD) models. Following laboratory evidence, the 1D model defines a constant rise velocity for the slug base and allows gas expansion to accelerate the slug nose through the overlying fluid during ascent. The evolution of rapidly expanding gas slugs observed in laboratory experiments is reproduced well and, at volcano scales, predicts at-surface overpressures of several atmospheres without requiring any initial overpressure at depth. The near-surface dynamics increase slug nose velocities through the overlying magma by a factor of c. 2.5 and the gas expansion results in pre-burst magma surface velocities of c. 35 m s−1. To examine pressure distributions and the forces exerted on a conduit, 3D CFD simulations were carried out. At volcano scales, the vertical single forces during final slug ascent to the surface are c. 106 N, two orders of magnitude smaller than those associated with very-long-period seismic events at Stromboli. This supports a previous interpretation of these events in which they are generated by gas slugs flowing through changes in conduit geometry, rather than being the direct result of slug eruption processes.
Abstract. Although ashfall from particulate volcanic plumes is known to be highly electrically charged, little is known about the charging mechanism. We describe experiments designed to investigate the particle charges generated from the fracture of pumice. Small silicate particles were produced in the laboratory during collisions between two samples cut from pumice clasts. The net charge magnitudes detected on these particles are similar to those previously measured on ashfall from volcanic plumes (-10 's to 10 -6 C kg-•). This net charge is also shown to be the result of a small imbalance between the sums of individual particle charges of both polarities, which are up to several orders of magnitude larger than the net charge. The magnitude of both the net and single polarity specific charges were only weakly affected by changes of relative humidity, but single polarity charges increased steadily with increasing sample impact velocities. The dominant charging process during the experiments was that of material fracture. The charging mechanism is thus interpreted to be fractoemission (the release of nuclear particles from fresh crack surfaces) occurring during the production of the silicate particles. This implies that the electrification of volcanic plumes could be the result of brittle fragmentation of magma or pumice clasts within the upper regions of the conduit and in the jet region of the plume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.