Plasma opening switch (POS) experiments performed on the Hawk generator [Commisso et al., Phys. Fluids B 4, 2368 (1992)] (750 kA, 1.2 μs) determine the dependence of the conduction current and conduction time on plasma density, electrode dimensions, and current rise rate. The experiments indicate that for a range of parameters, conduction is controlled by magnetohydrodynamic (MHD) distortion of the plasma, resulting in a low density region where opening can occur, possibly by erosion. The MHD distortion corresponds to an axial translation of the plasma center-of-mass by half the initial plasma length, leading to a simple scaling relation between the conduction current and time, and the injected plasma density and POS electrode dimensions that is applicable to a large number of POS experiments. For smaller currents and conduction times, the Hawk data suggest a non-MHD conduction limit that may correspond to electromagnetohydrodynamic (EMH) field penetration through the POS plasma.
Plasma wakefield effects on highcurrent relativistic electron beam transport in the ionfocused regimeSeveral recent experiments involving relativistic electron beam (REB) transport in plasma channels show two density regimes for efficient transport; a low-density regime known as the ion-focused regime (IFR) and a high-pressure regime. The results obtained in this paper use three separate models to explain the dependency of REB transport efficiency on the plasma density in the IFR. Conditions for efficient beam transport are determined by examining equilibrium solutions of the Vlasov-Maxwell equations under conditions relevant to IFR transport. The dynamic force balance required for efficient IFR transport is studied using the particle-in-cell (PIC) method. These simulations provide new insight into the transient beam front physics as well as the dynamic approach to IFR equilibrium. Nonlinear solutions to the beam envelope are constructed to explain oscillations in the beam envelope observed in the PIG simulations but not contained in the Vlasov equilibrium analysis. A test particle analysis is also developed as a method to visualize equilibrium solutions of the Vlasov equation. This not only provides further insight into the transport mechanism but also illustrates the connections between the three theories used to describe IFR transport. Separately these models provide valuable information about transverse beam confinement; together they provide a clear physical understanding of REB transport in the IFR,
Magnetic field penetration in electron-magnetohydrodynamics (EMHD) can be driven by density gradients through the Hall term [Kingsep et al., Sov. J. Plasma Phys. 10, 495 (1984)]. Particle-in-cell simulations have shown that a magnetic front can go unstable and break into vortices in the Hall-driven EMHD regime. In order to understand these results, a new fluid model had been derived from the Ly/Ln≪1 limit of EMHD, where Ly is the length scale along the front and Ln is the density gradient length scale. This model is periodic in the direction along the magnetic front, which allows the dynamics of the front to be studied independently of electrode boundary effects that could otherwise dominate the dynamics. Numerical solutions of this fluid model are presented that show for the first time the relation between Hall-driven EMHD, electron inertia, the Kelvin-Helmholtz (KH) instability, and the formation of magnetic vortices. These solutions show that a propagating magnetic front is unstable to the same KH mode predicted for a uniform plasma. This instability causes the electron flow to break up into vortices that are then driven into the plasma with a speed that is proportional to the Hall speed. This demonstrates that, in two-dimensional geometry with sufficiently low collisionality [collision rate ν ≲ vHall/(4δe)], Hall-driven magnetic penetration occurs not as a uniform shock front but rather as vortex-dominated penetration. Once the vortices form, the penetration speed is found to be nearly a factor of two larger than the redicted speed (vHall/2) obtained from Burgers' equation in the one-dimensional limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.