This paper presents a variant of particle swarm optimizers (PSOs) that we call the comprehensive learning particle swarm optimizer (CLPSO), which uses a novel learning strategy whereby all other particles' historical best information is used to update a particle's velocity. This strategy enables the diversity of the swarm to be preserved to discourage premature convergence. Experiments were conducted (using codes available from http://www.ntu.edu.sg/home/epnsugan) on multimodal test functions such as Rosenbrock, Griewank, Rastrigin, Ackley, and Schwefel and composition functions both with and without coordinate rotation. The results demonstrate good performance of the CLPSO in solving multimodal problems when compared with eight other recent variants of the PSO.Index Terms-Composition benchmark functions, comprehensive learning particle swarm optimizer (CLPSO), global numerical optimization, particle swarm optimizer (PSO).
This paper describes use of a multiobjective optimization method, elitist nondominated sorting genetic algorithm version II (NSGA-II), to the generation expansion planning (GEP) problem. The proposed model provides for decision maker choice from among the different trade-off solutions. Two different problem formulations are considered. In one formulation, the first objective is to minimize cost; the second objective is to minimize sum of normalized constraint violations. In the other formulation, the first objective is to minimize investment cost; the second objective is to minimize outage cost (or maximize reliability). Virtual mapping procedure is introduced to improve the performance of NSGA-II. The GEP problem considered is a test system for a six-year planning horizon having five types of candidate units. The results are compared and validated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.