BackgroundThe aerial parts of Rumex acetosa L. have been used in traditional European medicine for inflammatory diseases of the mouth epithelial tissue. The following study aimed to investigate the influence of a proanthocyanidin-enriched extract from R. acetosa extract against the adhesion of Porphyromonas gingivalis (P. gingivalis), a pathogen strongly involved in chronic and aggressive periodontitis. A further goal was to define the bioactive lead structures responsible for a potential antiadhesive activity and to characterize the underlying molecular mechanisms of the antiadhesive effects.MethodologyAn extract of R. acetosa (RA1) with a defined mixture of flavan-3-ols, oligomeric proanthocyanidins and flavonoids, was used. Its impact on P. gingivalis adhesion to KB cells was studied by flow cytometry, confocal laser scanning microscopy and in situ adhesion assay using murine buccal tissue. RA1 and its compounds 1 to 15 were further investigated for additional effects on gingipain activity, hemagglutination and gene expression by RT-PCR.Principal FindingsRA1 (5 to 15 μg/mL) reduced P. gingivalis adhesion in a dose-dependent manner to about 90%. Galloylated proanthocyanidins were confirmed to be responsible for this antiadhesive effect with epicatechin-3-O-gallate-(4β,8)-epicatechin-3’-O-gallate (syn. procyanidin B2-di-gallate) being the lead compound. Ungalloylated flavan-3-ols and oligomeric proanthocyanidins were inactive. RA1 and the galloylated proanthocyanidins strongly interact with the bacterial virulence factor Arg-gingipain, while the corresponding Lys-gingipain was hardly influenced. RA1 inhibited also hemagglutination. In silico docking studies indicated that epicatechin-3-O-gallate-(4β,8)-epicatechin-3’-O-gallate interacts with the active side of Arg-gingipain and hemaglutinin from P. gingivalis; the galloylation of the molecule seems to be responsible for fixation of the ligand to the protein. In conclusion, the proanthocyanidin-enriched extract RA1 and its main active constituent procyanidin B2-di-gallate protect cells from P. gingivalis infection by inhibiting bacterial adhesion to the host cell. RA1 and procyanidin B2-di-gallate appear to be promising candidates for future cytoprotective preparations for oral mouth care products.
Rumex acetosa significantly inhibits the adhesion of Porphyromonas gingivalis (P.g.) to eukaryotic host cells in vitro. The objective of this randomized placebo-controlled pilot-trial was to analyze effects of a mouth rinse containing 0.8 % (w/w) of a quantified proanthocyanidin-enriched extract from Rumex acetosa (RA1) on microbiological, clinical, and cytological parameters in systemically healthy individuals without history of periodontitis, harboring P.g. intraorally.
35 subjects received a supragingival debridement (SD) followed by mouth rinsing (3 times daily) with either RA1 mouth rinse solution (test) or placebo (control) for 7 days as adjunct to routine oral hygiene. Supragingival biofilm samples were taken at screening visit, baseline (BL), 2, 4, 7 and 14 days after SD. P.g. and 11 other oral microorganisms were detected and quantified by rtPCR. Changes in the oral microbiota composition of one test and one control subject were assessed via high throughput 16S rRNS gene amplicon sequencing. Approximal Plaque Index (API) and the modified Sulcular Bleeding Index (SBI) were assessed at BL, 7- and 14-days following SD. Brush biopsies were taken at BL and 14 d following SD.
Intergroup comparisons revealed no significant microbiological, cytological, and clinical differences at any timepoint. However, a significant reduction in SBI at day 14 (p=0.003) and API at day 7 (p=0.02) and day 14 (p=0.009) was found in the test group by intragroup comparison. No severe adverse events were observed.
The results indicate that RA1 mouth rinse is safe but does not seem to inhibit colonization of P.g. or improve periodontal health following SD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.