Abstract. The Saccharomyces cerevisiae KRE1 gene encodes a Ser/Thr-rich protein, that is directed into the yeast secretory pathway, where it is highly modified, probably through addition of O-linked mannose residues. Gene disruption of the KRE1 locus leads to a 40% reduced level of cell wall (l~6)-/~-glucan. Structural analysis of the (1---6)-/~-glucan fraction, isolated from a strain with a krel disruption mutation, showed that it had an altered structure with a smaller average polymer size. Mutations in two other loci, KRE5 and KRE6 also lead to a defect in cell wall (1-*6)-~-glucan production and appear to be epistatic to KRE/. These findings outline a possible pathway of assembly of yeast cell wall (l~6)-fl-glucan.
Saffron (stigmata of Crocus sativus L.) has been used for medicinal purposes for millennia. Throughout history, uses against cancer and depressive mood can regularly be identified. These applications have also been in the focus of modern research. Promising and selective anti-cancer effects have been observed in vitro and in vivo, but not yet in clinical trials. Antidepressant effects were found in vivo and in clinical pilot studies. Saffron extracts thus have the potential to make a major contribution to rational phytotherapy.
Synthetic and natural mucoadhesive biomaterials in optimized galenical formulations are potentially useful for the transmucosal delivery of active ingredients to improve their localized and prolonged effects. Chitosans (CS) have potent mucoadhesive characteristics, but the exact mechanisms underpinning such interactions at the molecular level and the role of the specific structural properties of CS remain elusive. In the present study we used a combination of microviscosimetry, zeta potential analysis, isothermal titration calorimetry (ITC) and fluorescence quenching to confirm that the soluble fraction of porcine stomach mucin interacts with CS in water or 0.1 M NaCl (at c < c*; relative viscosity, η(rel), ∼ 2.0 at pH 4.5 and 37 °C) via a heterotypic stoichiometric process significantly influenced by the degree of CS acetylation (DA). We propose that CS-mucin interactions are driven predominantly by electrostatic binding, supported by other forces (e.g., hydrogen bonds and hydrophobic association) and that the DA influences the overall conformation of CS and thus the nature of the resulting complexes. Although the conditions used in this model system are simpler than the typical in vivo environment, the resulting knowledge will enable the rational design of CS-based nanostructured materials for specific transmucosal drug delivery (e.g., for Helicobacter pylori stomach therapy).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.