Two of the most challenging issues in online testing are deriving a general tester scheme for various circuits and reducing the area overhead. This paper presents a novel reconfigurable online tester using artificial neural networks to test combinational hardware. Our proposed BIST architecture has the capability of testing a number of arbitrary sub-modules of a big design simultaneously by time-multiplexing between them. Output partitioning method is proposed as a powerful technique to reduce neural network training time and the tester area overhead. Our experimental results show that after proper partitioning the average area overhead is reduced by 16% in data-path and 33% in memory area. Also average fault detection latency has been improved by 14%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.