In this paper we present the investigation of the energy transfer efficiency between Tb3+ and Yb3+ ions in silica-hafnia waveguides. Cooperative energy transfer between these two ions allows to cut one 488 nm photon in two 980 nm photons and could have important applications in improving the performance of photovoltaic solar cells. Previous works revealed that for a given concentration of donors (Tb3+, increasing the number of acceptors (Yb3+) located near to the Tb3+ ion can increase the Tb-Yb transfer probability. However, when increasing the density of active ions, some detrimental effects due to cross-relaxation mechanisms become relevant. On the basis of this observation the sample doping was chosen keeping constant the molar ratio [Yb]/[Tb] = 4 and the total rare earths contents were [Tb + Yb]/[Si + Hf] = 5%, 7%, 9%. The choice of the matrix is another crucial point to obtain an efficient down conversion processes with rare earth ions. To this respect a 70SiO(2)-30HfO(2) waveguide composition was chosen. The comparison between the glass and the glass-ceramic structures demonstrated that the latter is more efficient since it combines the good optical properties of glasses with the optimal spectroscopic properties of crystals activated by luminescent species. A maximum transfer efficiency of 55% was found for the highest rare earth doping concentration
The aim of this paper is to study the possibility to obtain an efficient downconverting waveguide which combines the quantum cutting properties of Tb 3+ /Yb 3+ codoped materials with the optical sensitizing effects provided by silver nanoaggregates. The preparation of 70 SiO2 -30 HfO2 glass and glass-ceramic waveguides by sol gel route, followed by Ag ion-exchange method is reported. The films were subsequently annealed to induce the migration and aggregation of the metal ions. Results of compositional and optical characterization are given, providing evidence for the successful introduction of Ag in the films, while the photoluminescence emission is strongly dependent on the annealing conditions. These films can find potential applications as downshifting layers to increase the efficiency of PV solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.