We show that diode-pumped solid-state lasers can generate tunable high-purity microwave signals. In the case of a single-axis cavity containing an adjustable linear phase anisotropy, orthogonal linear eigenstates oscillate with a continuously tunable frequency difference. The maximum beat frequency is fixed by the laser cavity length and can reach a few tens of GHz. In order to reach the THz range, insertion of a double refraction crystal inside the laser cavity creates a two-axis laser that allows one to choose independently the frequencies of the two eigenstates. In this case the maximum beat frequency is fixed by the active medium gain bandwidth which is of a few THz for an Er:Yb:glass active medium. We show that doubling the two frequencies emitted by such a two-axis laser at 1.55 µm yields a source of tunable cw THz beat notes suitable for photomixing in GaAs-based THz emitters. Moreover, the beat notes generated by diode-pumped solid-state lasers can be phase-locked to microwave local oscillators. In particular, we show that a singleaxis Er:Yb:glass laser provides a beat note continuously tunable from 0 to 20 GHz with a 170 µHz line width. The phase noise of such a source is measured to be lower than -130 dBc/Hz at 100 kHz offset from the carrier.
The second harmonic generation in a thin ss-barium borate crystal is used to measure chi ((2)) cascading phenomena in the spectral domain. The harmonic generation is induced by two pulses produced by spectrally filtering a femtosecond pulse and centered at the wavelength lambda -Delta lambda and lambda +Delta lambda. New spectral components appear in spectral density of both the fundamental and harmonic pulses. High order cascading phenomena are evidenced. In good agreement with theoretical predictions, for large phase mismatch the evolution of the spectra demonstrates the competition between cascaded chi(2) and chi(3) phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.