The abundance and structure of dark matter subhaloes have been analysed extensively in recent studies of dark-matter-only simulations, but comparatively little is known about the impact of baryonic physics on halo substructures. We here extend the SUBFIND algorithm for substructure identification such that it can be reliably applied to dissipative hydrodynamical simulations that include star formation. This allows, in particular, the identification of galaxies as substructures in simulations of clusters of galaxies and a determination of their content of gravitationally bound stars, dark matter and hot and cold gas. Using a large set of cosmological cluster simulations, we present a detailed analysis of halo substructures in hydrodynamical simulations of galaxy clusters, focusing in particular on the influence both of radiative and non-radiative gas physics and of non-standard physics such as thermal conduction and feedback by galactic outflows. We also examine the impact of numerica
Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015–2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid’s Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.
We present a detailed X-ray spectral analysis of the sources in the 1Ms catalog of the Chandra Deep Field South (CDFS) taking advantage of optical spectroscopy and photometric redshifts for 321 extragalactic sources out of the total sample of 347 sources. As a default spectral model, we adopt a power law with slope Γ with an intrinsic redshifted absorption N H , a fixed Galactic absorption and an unresolved Fe emission line. For 82 X-ray bright sources, we are able to perform the X-ray spectral analysis leaving both Γ and N H free. The weighted mean value for the slope of the power law is Γ 1.75 ± 0.02, and the distribution of best fit values shows an intrinsic dispersion of σ int 0.30. We do not find hints of a correlation between the spectral index Γ and the intrinsic absorption column density N H . We then investigate the absorption distribution for the whole sample, deriving the N H values in faint sources by fixing Γ = 1.8. We also allow for the presence of a scattered component at soft energies with the same slope of the main power law, and for a pure reflection spectrum typical of Compton-thick AGN. We detect the presence of a scattered soft component in 8 sources; we also identify 14 sources showing a reflection-dominated spectrum. The latter are referred to as Compton-thick AGN candidates. By correcting for both incompleteness and sampling-volume effects, we recover the intrinsic N H distribution representative of the whole AGN population, f (N H )dN H , from the observed one. f (N H ) shows a lognormal shape, peaking around log(N H ) 23.1 and with σ 1.1. Interestingly, such a distribution shows continuity between the population of Compton-thin and that of Compton-thick AGN. We find that the fraction of absorbed sources (with N H > 10 22 cm −2 ) in the sample is constant (at the level of about 75%) or moderately increasing with redshift. Finally, we compare the optical classification to the X-ray spectral properties, confirming that the correspondence of unabsorbed (absorbed) X-ray sources to optical type I (type II) AGN is accurate for at least 80% of the sources with spectral identification (1/3 of the total X-ray sample).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.