Context. Luminous red novae (LRNe) have absolute magnitudes intermediate between novae and supernovae, and show a relatively homogeneous spectro-photometric evolution. Although they were thought to derive from core instabilities in single stars, there is growing support to the idea that they are triggered by binary interaction, possibly ending with the merging of the two stars. Aims. AT 2018hso is a new transient showing transitional properties between those of LRNe and the class of intermediate luminosity red transients (ILRTs) similar to SN 2008S. Through the detailed analysis of the observed parameters, our study support that it actually belongs to the LRN class, and was likely produced by the coalescence of two massive stars. Methods. We obtained ten months of optical and near infrared photometric monitoring, and eleven epochs of low-resolution optical spectroscopy of AT 2018hso. We compared its observed properties with those of other ILRTs and LRNe. We also inspected archive Hubble Space Telescope (HST) images obtained about 15 years ago to constrain the progenitor's properties. Results. The light curves of AT 2018hso show a first sharp peak (M r = −13.93 mag), followed by a broader and shallower second peak, that resembles a plateau in the optical bands. The spectra dramatically change with time. Early time spectra show prominent Balmer emission lines and a weak [Ca ii] doublet, which is usually observed in ILRTs. However, the major decrease in the continuum temperature, the appearance of narrow metal absorption lines, the major change in the Hα strength and profile, and the emergence of molecular bands support a LRN classification. The possible detection of an I ∼ −8 mag source at the position of AT 2018hso in HST archive images is consistent with expectations for a pre-merger massive binary, similar to the precursor of the 2015 LRN in M101. Conclusions. We provide reasonable arguments to support a LRN classification for AT 2018hso. This study reveals growing heterogeneity in the observables of LRNe than thought in the past, making sometimes tricky the discrimination between LRNe and ILRTs. This suggests the need of monitoring the entire evolution of gap transients to avoid misclassifications.
The Hubble Frontier Fields data, along with multiple data sets obtained by other telescopes, have provided some of the most extensive constraints on cluster lenses to date. Multiple lens modelling teams analyzed the fields and made public a number of deliverables. By comparing these results, we can then undertake a unique and vital test of the state of cluster lens modelling. Specifically, we see how well the different teams can reproduce similar magnifications and mass profiles. We find that the circularly averaged mass profiles of the fields are remarkably constrained (scatter $\lt 5{{\ \rm per\ cent}}$) at distances of 1 arcmin from the cluster core, yet magnifications can vary significantly. Averaged across the six fields, we find a bias of −6 per cent (−17 per cent) and a scatter of ∼40 per cent (∼65 per cent) at a modest magnification of 3 (10). Statistical errors reported by individual teams are often significantly smaller than the differences among all the teams, indicating the importance of continued systematics studies in cluster lensing.
In the cold dark matter (CDM) picture of structure formation, galaxy mass distributions are predicted to have a considerable amount of structure on small scales. Strong gravitational lensing has proven to be a useful tool for studying this small-scale structure. Much of the attention has been given to detecting individual dark matter subhalos through lens modeling, but recent work has suggested that the full population of subhalos could be probed using a power spectrum analysis. In this paper we quantify the power spectrum of small-scale structure in simulated galaxies, with the goal of understanding theoretical predictions and setting the stage for using measurements of the power spectrum to test dark matter models. We use a sample of simulated galaxies generated from the Galacticus semi-analytic model to determine the power spectrum distribution first in the CDM paradigm and then in a warm dark matter scenario. We find that a measurement of the slope and amplitude of the power spectrum on galaxy strong lensing scales (k ∼ 1 kpc −1 ) could be used to distinguish between CDM and alternate dark matter models, especially if the most massive subhalos can be directly detected via gravitational imaging.
We present the results from a high cadence, multi-wavelength observation campaign of AT 2016jbu, (aka Gaia16cfr) an interacting transient. This dataset complements the current literature by adding higher cadence as well as extended coverage of the lightcurve evolution and late-time spectroscopic evolution. Photometric coverage reveals that AT 2016jbuunderwent significant photometric variability followed by two luminous events, the latter of which reached an absolute magnitude of MV ∼ −18.5 mag. This is similar to the transient SN 2009ipwhose nature is still debated. Spectra are dominated by narrow emission lines and show a blue continuum during the peak of the second event. AT 2016jbushows signatures of a complex, non-homogeneous circumstellar material (CSM). We see slowly evolving asymmetric hydrogen line profiles, with velocities of 500 km s−1seen in narrow emission features from a slow moving CSM, and up to 10,000 km s−1seen in broad absorption from some high velocity material. Late-time spectra (∼ +1 year) show a lack of forbidden emission lines expected from a core-collapse supernova and are dominated by strong emission from H, He i and Ca ii. Strong asymmetric emission features, a bumpy lightcurve, and continually evolving spectra suggest an inhibit nebular phase. We compare the evolution of Hα among SN 2009ip-like transients and find possible evidence for orientation angle effects. The light-curve evolution of AT 2016jbusuggests similar, but not identical, circumstellar environments to other SN 2009ip-like transients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.