A new chain structure of Au is found on stepped Si(111) which exhibits a 1/4-filled band and a pair of > or =1/2-filled bands with a combined filling of 4/3. Band dispersions and Fermi surfaces for Si(553)-Au are obtained by photoemission and compared to that of Si(557)-Au. The dimensionality of both systems is determined using a tight binding fit. The fractional band filling makes it possible to preserve metallicity in the presence of strong correlations.
We investigate theoretically the spin-polarized electron transport through a complex organic molecule coupled to magnetic contacts. Our focus is on how low-energy deformations of the molecule affect the current-voltage characteristics and the magnetotransport of this molecular-scale device. We find that fairly modest deformations, costing only a few tens of meVs, can substantially change the tunneling current-by factors of 2 or more. Such deformations have still larger impact on the magnetoresistance, with small changes in molecular conformation even leading to changes in the sign of the magnetoresistance.