The growth in altitude/latitude of equatorial plasma bubbles was monitored, using simultaneous recordings of VHF scintillations at five locations situated between 3° and 23°N magnetic latitudes along a common meridian (84°E) during February 1980. The onsets of postsunset scintillation were mostly abrupt in character, and their occurrence at higher latitudes was conditional on their prior appearance at lower latitudes, indicating a causal link to irregularities associated with rising equatorial plasma bubbles. The day‐to‐day occurrence and the latitudinal, and effectively altitudinal, growths are examined in relation to the prereversal enhancement in h′F during sunset hours and its rate of rise, the onset of a postsunset secondary maximum (PSSM) in ionospheric electron content (IEC), and equatorial electrojet strength (EEJ) variations. It is observed that the bubble and associated irregularities, after its onset over the magnetic equator, reached the highest altitudes/latitudes only on those days when a prior PSSM in IEC is observed there in addition to high values of h′F, dh′F/dt and bubble rise velocity; otherwise it will be confined to near equatorial latitudes only. Also, the equatorial h′F, dh′F/dt, magnitude of PSSM and intensity of 4 GHz scintillations at low latitude are all showing positive correlation with daytime EEJ strength variations. It is concluded that, after the initial development of a bubble, the ExB drift and the PSSM play an important role in the subsequent growth and evolution, and EEJ is a useful parameter for the prediction of the development.
Angstrom exponent measurements of equivalent black carbon (BCeq) have recently been introduced as a novel tool to apportion the contribution of biomass burning sources to the BCeq mass. The BCeq is the mass of ideal BC with defined optical properties that, upon deposition on the aethalometer filter tape, would cause equal optical attenuation of light to the actual PM2.5 aerosol deposited. The BCeq mass hence is identical to the mass of the total light-absorbing carbon deposited on the filter tape. Here, we use simultaneously collected data from a seven-wavelength aethalometer and a high-sensitivity proton-transfer reaction mass spectrometer installed at a suburban site in Mohali (Punjab), India, to identify a number of biomass combustion plumes. The identified types of biomass combustion include paddy- and wheat-residue burning, leaf litter, and garbage burning. Traffic plumes were selected for comparison. We find that the combustion efficiency, rather than the fuel used, determines αabs, and consequently, the αabs can be ∼1 for flaming biomass combustion and >1 for older vehicles that operate with poorly optimized engines. Thus, the absorption angstrom exponent is not representative of the fuel used and, therefore, cannot be used as a generic tracer to constrain source contributions.
Abstract. Many sites in the densely populated Indo-Gangetic Plain (IGP) frequently exceed the national ambient air quality standard (NAAQS) of 100 μg m−3 for 24 h average PM10 and 60 μg m−3 for 24 h average PM2.5 mass loadings, exposing residents to hazardous levels of particulate matter (PM) throughout the year. We quantify the contribution of long-range transport to elevated PM levels and the number of exceedance events through a back-trajectory climatology analysis of air masses arriving at the IISER Mohali Atmospheric Chemistry facility (30.667° N, 76.729° E; 310 m a.m.s.l.) for the period August 2011–June 2013. Air masses arriving at the receptor site were classified into six clusters, which represent synoptic-scale air-mass transport patterns. Long-range transport from the west leads to significant enhancements in the average fine- and coarse-mode PM mass loadings during all seasons. The contribution of long-range transport from the west and south-west (source regions: Arabia, Thar Desert, Middle East and Afghanistan) to coarse-mode PM varied between 9 and 57 % of the total PM10–2.5 mass. Local pollution episodes (wind speed < 1 m s−1) contributed to enhanced PM2.5 mass loadings during both the winter and summer seasons and to enhanced coarse-mode PM only during the winter season. South-easterly air masses (source region: eastern IGP) were associated with significantly lower fine- and coarse-mode PM mass loadings during all seasons. The fraction of days in each season during which the PM mass loadings exceeded the national ambient air quality standard was controlled by long-range transport to a much lesser degree. For the local cluster, which represents regional air masses (source region: NW-IGP), the fraction of days during which the national ambient air quality standard (NAAQS) of 60 μg m−3 for 24 h average PM2.5 was exceeded varied between 36 % of the days associated with this synoptic-scale transport during the monsoon, and 95 % during post-monsoon and winter seasons; the fraction of days during which the NAAQS of 100 μg m−3 for the 24 h average PM10 was exceeded, varied between 48 % during the monsoon and 98 % during the post-monsoon season. Long-range transport was responsible for both, bringing air masses with a significantly lower fraction of exceedance days from the eastern IGP and air masses with a moderate increase in the fraction of exceedance days from the west (source regions: Arabia, Thar Desert, Middle East and Afghanistan). In order to bring PM mass loadings into compliance with the NAAQS and to reduce the number of exceedance days, mitigation of regional combustion sources in the NW-IGP needs to be given highest priority.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.