The objective of this study was to investigate the effects of starch varying in rate of fermentation and level of inclusion in the diet in exchange for fiber on methane (CH4) production of dairy cows. Forty Holstein-Friesian lactating dairy cows of which 16 were rumen cannulated were grouped in 10 blocks of 4 cows each. Cows received diets consisting of 60% grass silage and 40% concentrate (dry matter basis). Cows within block were randomly assigned to 1 of 4 different diets composed of concentrates that varied in rate of starch fermentation [slowly (S) vs. rapidly (R) rumen fermentable; native vs. gelatinized corn grain] and level of starch (low vs. high; 270 vs. 530g/kg of concentrate dry matter). Results of rumen in situ incubations confirmed that the fractional rate of degradation of starch was higher for R than S starch. Effective rumen degradability of organic matter was higher for high than low starch and also higher for R than S starch. Increased level of starch, but not starch fermentability, decreased dry matter intake and daily CH4 production. Milk yield (mean 24.0±1.02kg/d), milk fat content (mean 5.05±0.16%), and milk protein content (mean 3.64±0.05%) did not differ between diets. Methane expressed per kilogram of fat- and protein-corrected milk, per kilogram of dry matter intake, or as a fraction of gross energy intake did not differ between diets. Methane expressed per kilogram of estimated rumen-fermentable organic matter (eRFOM) was higher for S than R starch-based diets (47.4 vs. 42.6g/kg of eRFOM) and for low than high starch-based diets (46.9 vs. 43.1g/kg of eRFOM). Apparent total-tract digestibility of neutral detergent fiber and crude protein were not affected by diets, but starch digestibility was higher for diets based on R starch (97.2%) compared with S starch (95.5%). Both total volatile fatty acid concentration (109.2 vs. 97.5mM) and propionate proportion (16.5 vs. 15.8mol/100mol) were higher for R starch- compared with S starch-based diets but unaffected by the level of starch. Total N excretion in feces plus urine and N retained were unaffected by dietary treatments, and similarly energy intake and output of energy in milk expressed per unit of metabolic body weight were not affected by treatments. In conclusion, an increased rate of starch fermentation and increased level of starch in the diet of dairy cattle reduced CH4 produced per unit of eRFOM but did not affect CH4 production per unit of feed dry matter intake or per unit of milk produced.
Dairy cattle farming in temperate regions often relies on grass herbage (GH)-based diets but the effect of several grass management options on enteric CH4 emission has not been fully investigated yet. We investigated the combined effect of N fertilization rate and length of regrowth period of GH (predominantly ryegrass) on CH4 emission from lactating dairy cows. In a randomized block design, 28 lactating Holstein-Friesian dairy cows received a basal diet of GH and compound feed [85:15; dry matter (DM) basis]. Treatments consisted of GH cut after 3 or 5 weeks of regrowth, after receiving either a low (20kg of N/ha) or a high (90kg of N/ha) fertilization rate after initial cut. Feed intake, digestibility, milk production and composition, N and energy balance, and CH4 emission were measured during a 5-d period in climate respiration chambers after an adaptation to the diet for 12d. Cows were restricted-fed during measurements and mean DM intake was 15.0±0.16kg/d. Herbage crude protein content varied between 76 and 161g/kg of DM, and sugar content between 186 and 303g/kg of DM. Fat- and protein-corrected milk (FPCM) and feed digestibility increased with increased N fertilization rates and a shorter regrowth interval. Increasing the N fertilization rate increased daily CH4 emission per cow (+10%) and per unit of DM intake (+9%), tended to increase the fraction of gross energy intake emitted as CH4 (+7%), and (partly because of the low crude protein content for the low fertilized GH) only numerically reduced CH4 per unit of FPCM. The longer regrowth interval increased CH4 emission per unit of FPCM (+14%) compared with the shorter regrowth interval, but did not affect CH4 emission expressed in any other unit. With increasing N fertilization CH4 emission decreased per unit of digestible neutral detergent fiber intake (-13%) but not per unit of digestible organic matter intake. There was no interaction of the effect of N fertilization rate and regrowth interval on CH4 emission, but effects of N fertilization were generally most distinct with GH of 5 wk regrowth. The present results suggest that altering grass quality through an increase of N fertilization and a shorter regrowth interval can reduce CH4 emission in zero-grazing dairy cows, depending on the unit in which it is expressed. The larger amount of CH4 produced per day and cow with the more intensively managed GH is compensated by a higher feed digestibility and FPCM yield.
Grass silage is typically fed to dairy cows in temperate regions. However, in vivo information on methane (CH 4 ) emission from grass silage of varying quality is limited. We evaluated the effect of two rates of nitrogen (N) fertilisation of grassland (low fertilisation (LF), 65 kg of N/ha; and high fertilisation (HF), 150 kg of N/ha) and of three stages of maturity of grass at cutting: early maturity (EM; 28 days of regrowth), mid maturity (MM; 41 days of regrowth) and late maturity (LM; 62 days of regrowth) on CH 4 production by lactating dairy cows. In a randomised block design, 54 lactating Holstein-Friesian dairy cows (168 ± 11 days in milk; mean ± standard error of mean) received grass silage (mainly ryegrass) and compound feed at 80 : 20 on dry matter basis. Cows were adapted to the diet for 12 days and CH 4 production was measured in climate respiration chambers for 5 days. Dry matter intake (DMI; 14.9 ± 0.56 kg/day) decreased with increasing N fertilisation and grass maturity. Production of fat-and proteincorrected milk (FPCM; 24.0 ± 1.57 kg/day) decreased with advancing grass maturity but was not affected by N fertilisation. Apparent total-tract feed digestibility decreased with advancing grass maturity but was unaffected by N fertilisation except for an increase and decrease in N and fat digestibility with increasing N fertilisation, respectively. Total CH 4 production per cow (347 ± 13.6 g/day) decreased with increasing N fertilisation by 4% and grass maturity by 6%. The smaller CH 4 production with advancing grass maturity was offset by a smaller FPCM and lower feed digestibility. As a result, with advancing grass maturity CH 4 emission intensity increased per units of FPCM (15.0 ± 1.00 g CH 4 /kg) by 31% and digestible organic matter intake (33.1 ± 0.78 g CH 4 /kg) by 15%. In addition, emission intensity increased per units of DMI (23.5 ± 0.43 g CH 4 /kg) by 7% and gross energy intake (7.0 ± 0.14% CH 4 ) by 9%, implying an increased loss of dietary energy with advancing grass maturity. Rate of N fertilisation had no effect on CH 4 emissions per units of FPCM, DMI and gross energy intake. These results suggest that despite a lower absolute daily CH 4 production with a higher N fertilisation rate, CH 4 emission intensity remains unchanged. A significant reduction of CH 4 emission intensity can be achieved by feeding dairy cows silage of grass harvested at an earlier stage of maturity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.