Nature is a rich source of taste-active compounds, in particular of plant origin, many of which have unusual tastes. Many of these are found in traditional food, where spontaneous plants are used as ingredients. Some taste-active compounds were identified in the bulbs of Muscari comosum, a spontaneous plant belonging to the family of the Liliaceae, very common in the Mediterranean area, and used in traditional gastronomy (called 'lampascioni' in South Italy). The bulbs were extracted with a series of solvents of different polarity. The different fractions were submitted to a preliminary sensory evaluation, and the most interesting ones, characterized by a strong bitter taste and some chemestetic properties, were submitted to further purification and structural analysis. From the ethereal extract, several 3-benzyl-4-chromanones and one stilbene derivative were isolated. Pure compounds were examined for their taste activity by means of sensory evaluation, and proved to be responsible for the characteristic taste of this food. Some of these compounds have been synthesized de novo to confirm their structure.
Abstract:Three new "hybrid" molecules containing the skeleton of oleic acid and salicylic acid were synthesised. A qualitative study of the chemical stability of two of them and a preliminary evaluation of their biological activity in vivo and in vitro were performed against a series of important plant pathogens.
Numerous mammalian viruses are routinely analyzed in clinical diagnostic laboratories around the globe or serve as indispensable model systems in viral research. Potentially infectious viral entities are handled as blood, biopsies, or cell and tissue culture samples. Countless protocols describe methods for virus fixation and inactivation, yet for many, a formal proof of safety and completeness of inactivation remains to be shown. While modern nucleic acid extraction methods work quite effectively, data are largely lacking on possible residual viral infectivity, e.g., when assessed after extended culture times, which maximizes the sensitivity for low levels of residual infectiousness. Therefore, we examined the potency and completeness of inactivation procedures on virus-containing specimens when applying commonly used fixatives like formaldehyde or nucleic acid extraction/lysis buffers. Typical representatives of different virus classes, including RNA and DNA viruses, enveloped and non-enveloped, such as adenovirus, enterovirus, lentivirus, and coronavirus, were used, and the reduction in the in vitro infectiousness was assessed for standard protocols. Overall, a 30-minute incubation with formaldehyde at room temperature effectively inactivated all tested enveloped and non-enveloped viruses. Full inactivation of HIV-1 and ECHO-11 was also achieved with all buffers in the test, whereas for SARS-CoV-2 and AdV-5, only five of the seven lysis buffers were fully effective under the tested conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.