Complex experimental study of the turbulent swirl flow behind the axial fan is reported in this paper. Axial fan with nine blades, designed to generate Rankine vortex, was positioned in the circular pipe entrance transparent section with profiled free bell mouth inlet. Two test rigs were built in order to study the turbulent swirl flow generated on the axial fan pressure side in the case of axially unrestricted and restricted swirl flows. One-component laser Doppler anemometry (LDA) and stereo particle image velocimetry (SPIV) were used in the first test rig in the measuring section 3.35D, measured from the test rig inlet. One of the latest measurement techniques, high speed SPIV (HSS PIV), was used for the measurements in the second test rig in the section 2.1D downstream the fan’s trailing edge. Achieved Reynolds numbers in the first test rig are Re = 182600 and 277020, while in the second Re = 186463. Turbulent velocity field non-homogeneity and anisotropy is revealed using the LDA system. Calculated turbulent statistical properties, such as moments of the second and higher orders, reveal complex mechanisms in turbulent swirl flow. It is shown for the used axial fan construction that swirl number has almost constant value for two various duty points generated by changing rotation number. Study of the instant and mean velocity fields obtained using SPIV discovers vortex core dynamics. Obtained percentage of the unique positions of the total velocity minimum are 10% for the first regime, while 11.5% for the second regime in the first test rig. HSS PIV experimental results have also shown the three-dimensionality and non-homogeneity of generated turbulent swirl flow. Experimentally determined and calculated invariant maps revealed three-component isotropic turbulence in the vortex core region.
Geometry analysis of the axial fan impeller, experimentally obtained operating characteristics and experimental investigations of the turbulent swirl flow generated behind the impeller are presented in this paper. Formerly designed and manufactured, axial fan impeller blade geometry (originally designed by Prof. DrIng. Z. Protić † ) has been digitized using a three-dimensional scanner. In parallel, the same impeller has been modeled by beta version software for modeling axial turbomachines, based on modified classical calculation. These results were compared. Afterwards, the axial fan operating characteristics were measured on the standardized test rig in the Laboratory for Hydraulic Machinery and Energy Systems, Faculty of Mechanical Engineering, University of Belgrade. Optimum blade impeller position was determined on the basis of these results. Afterwards, impeller with angle 22, without outlet vanes, was positioned in a circular pipe. Rotational speed has been varied in the range from 500 till 2500 rpm. Reynolds numbers generated in this way, calculated for axial velocity component, was in the range from 0.68·10 5 till 2.5·10 5 . Laser Doppler anemometry measurements and stereo particle image velocimetry measurements of the three-dimensional velocity field in the swirl turbulent fluid flow behind the axial fan have been performed for each regime. Obtained results point out extraordinary complexity of the structure of generated three-dimensional turbulent velocity fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.