Tumor necrosis factor-alpha (TNF) is a cytokine that displays a pleomorphic array of effects on different cell populations. Evidence is presented that TNF may be constitutively produced by B-cell chronic lymphocytic leukemia (B-CLL) and hairy cell leukemia (HCL) cells and that it may play a relevant role in these diseases. These conclusions are based on the presence of circulating levels of TNF in the serum of 20 of the 24 patients tested (83.3%), while undetectable values were found in normal sera. The suggestion that the increased serum levels were due to the leukemic cell population is strengthened by the evidence that purified B-CLL and HCL cells may constitutively release variable degrees of TNF. These levels markedly increase after incubation with interferon gamma or phytohemagglutinin (PHA) plus phorbol myristate acetate (PMA). The cellular release of TNF by primary B-CLL cells was significantly (P less than .001) higher in B-CLL stage O-I patients compared with stage II-III patients. The demonstration that, in B-cell chronic lymphoproliferative disorders, the pathologic cells may release TNF was further confirmed by the presence of the mRNA for this cytokine in primary and/or in pre-activated cells. Recombinant TNF was capable of inducing a proliferative signal only in a minority of cases (4/24); in most cases it was ineffective, and, in a few, it reduced the degree of proliferation. Furthermore, in costimulatory experiments with interleukin-2 and PHA plus PMA, TNF was ineffective. On the other hand, when primary B-CLL cells were incubated in the presence of an anti-TNF antibody, in 8 of 12 independent experiments a 2- to 15-fold increase in thymidine uptake was documented. Taken together, these results suggest that TNF may play a regulatory role in the progression of the neoplastic clone in B-cell chronic lymphoproliferative disorders and may be implicated in some of the side effects associated with these diseases.
Tumor necrosis factor-alpha (TNF) is a cytokine that displays a pleomorphic array of effects on different cell populations. Evidence is presented that TNF may be constitutively produced by B-cell chronic lymphocytic leukemia (B-CLL) and hairy cell leukemia (HCL) cells and that it may play a relevant role in these diseases. These conclusions are based on the presence of circulating levels of TNF in the serum of 20 of the 24 patients tested (83.3%), while undetectable values were found in normal sera. The suggestion that the increased serum levels were due to the leukemic cell population is strengthened by the evidence that purified B-CLL and HCL cells may constitutively release variable degrees of TNF. These levels markedly increase after incubation with interferon gamma or phytohemagglutinin (PHA) plus phorbol myristate acetate (PMA). The cellular release of TNF by primary B-CLL cells was significantly (P less than .001) higher in B-CLL stage O-I patients compared with stage II-III patients. The demonstration that, in B-cell chronic lymphoproliferative disorders, the pathologic cells may release TNF was further confirmed by the presence of the mRNA for this cytokine in primary and/or in pre-activated cells. Recombinant TNF was capable of inducing a proliferative signal only in a minority of cases (4/24); in most cases it was ineffective, and, in a few, it reduced the degree of proliferation. Furthermore, in costimulatory experiments with interleukin-2 and PHA plus PMA, TNF was ineffective. On the other hand, when primary B-CLL cells were incubated in the presence of an anti-TNF antibody, in 8 of 12 independent experiments a 2- to 15-fold increase in thymidine uptake was documented. Taken together, these results suggest that TNF may play a regulatory role in the progression of the neoplastic clone in B-cell chronic lymphoproliferative disorders and may be implicated in some of the side effects associated with these diseases.
The effect of recombinant interleukin 2 (IL2) on the in vitro and in vivo proliferation and growth of human acute leukaemia cells of both myeloid and lymphoid origin was investigated. In none of the 25 primary samples tested could a continuously in vitro growing cell line be obtained by adding IL2 to the culture medium. Although IL2 induced a proliferative signal in three of the 31 acute leukaemias analysed, the overall 3H-thymidine uptake of the neoplastic cells was significantly reduced (P less than 0.05) in the presence of IL2. The unlikelihood of an important proliferative signal triggered by IL2 was confirmed in a semisolid clonogenic assay, which failed to document an increased colony growth in the 26 samples studied. Furthermore, using a colorimetric assay as a test for cell proliferation and survival, in seven of the 11 fresh acute leukaemia samples tested a 22-40% reduction in viability was observed in the presence of IL2, while in the remaining four, IL2 was ineffective. In order to investigate the effect of IL2 in an in vivo setting, an experimental model in heavily immunosuppressed nu/nu mice was established. In no case did IL2 promote the in vivo proliferation and growth of human myeloid and lymphoid acute leukaemia cells injected in the mice. On the contrary, with seven of the eight leukaemic cell lines which gave rise spontaneously to leukaemic masses, this could be prevented when the mice received locally 300 U of IL2 three times daily for 90 d. IL2 also blocked the growth in vivo of three fresh acute leukaemia samples (two myeloid and one lymphoid). Co-culture experiments using leukaemic cell lines and increasing numbers of normal lymphocytes suggest that the inhibitory effect of IL2 is probably exerted via an indirect mechanism. These findings, coupled to the well-documented ability of IL2 to generate lymphokine activated killer cells cytolytic against leukaemic blasts, further point to the potential role of immunotherapy with IL2 in the management of patients with haematological malignancies.
The capacity to generate lymphokine-activated killer (LAK) cells and the susceptibility of the neoplastic cells to both allogeneic and autologous LAK effectors were studied in B and T chronic lymphoproliferative disorders. While in B-cell chronic lymphocytic leukemia (B-CLL) the depressed natural killer function could be restored after a 7-day incubation with recombinant interleukin (IL-2), B-CLL mononuclear cells showed a reduced LAK activity compared with normal LAK cells. Furthermore, in all but 1 of the 20 B-CLL samples tested the leukemic cells were totally resistant to autologous LAK effectors. In most cases the leukemic cells were also resistant to normal allogeneic LAK cells. Competition experiments demonstrated that the patients' LAK cells, as well as normal LAK effectors, were capable of recognizing B-CLL cells, pointing, therefore, to a postbinding cytolytic defect. In hairy cell leukemia (HCL) an overall reduced LAK activity against allogeneic targets was documented, but, at variance from B-CLL, hairy cells were often susceptible to the lytic effect of normal LAK cells, and in half of the cases tested the neoplastic population was also sensitive in an autologous system. Similarly to B- CLL, in the great majority of T chronic lymphoproliferative disorders studied, the pathologic cells were resistant to normal and autologous LAK effectors and a defective LAK generation was found. These results demonstrate that in most B and T chronic leukemias the LAK function is defective and, when inducible, does not appear directed against the leukemic population. The possibility of exploiting an immunotherapeutic approach with IL-2/LAK cells in the management of chronic lymphoproliferative disorders does not gain support by these findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.