A multi-layered polydimethylsiloxane microfluidic device with an integrated suspended membrane has been fabricated that allows dynamic and multi-axial mechanical deformation and simultaneous live-cell microscopy imaging. The transparent membrane’s strain field can be controlled independently along two orthogonal directions. Human foreskin fibroblasts were immobilized on the membrane’s surface and stretched along two orthogonal directions sequentially while performing live-cell imaging. Cyclic deformation of the cells induced a reversible reorientation perpendicular to the direction of the applied strain. Cells remained viable in the microdevice for several days. As opposed to existing microfluidic or macroscale stretching devices, this device can impose changing, anisotropic and time-varying strain fields in order to more closely mimic the complexities of strains occurring in vivo.Electronic supplementary materialThe online version of this article (doi:10.1007/s10529-013-1381-5) contains supplementary material, which is available to authorized users.
The strain-induced reorientation response of cyclically stretched cells has been well characterized in uniform strain fields. In the present study, we comprehensively analyse the behaviour of human fibroblasts subjected to a highly non-uniform strain field within a polymethylsiloxane microdevice. Our results indicate that the strain gradient amplitude and direction regulate cell reorientation through a coordinated gradient avoidance response. We provide critical evidence that strain gradient is a key physical cue that can guide cell organization. Specifically, our work suggests that cells are able to pinpoint the location under the cell of multiple physical cues and integrate this information (strain and strain gradient amplitudes and directions), resulting in a coordinated response. To gain insight into the underlying mechanosensing processes, we studied focal adhesion reorganization and the effect of modulating myosin-II contractility. The extracted focal adhesion orientation distributions are similar to those obtained for the cell bodies, and their density is increased by the presence of stretching forces. Moreover, it was found that the myosin-II activity promoter calyculin-A has little effect on the cellular response, while the inhibitor blebbistatin suppresses cell and focal adhesion alignment and reduces focal adhesion density. These results confirm that similar internal structures involved in sensing and responding to strain direction and amplitude are also key players in strain gradient mechanosensing and avoidance.
On-chip microvalves regulate electrical and fluidic access to an array of nanopores integrated within microfluidic networks. This configuration allows for on-chip sequestration of biomolecular samples in various flow channels and analysis by independent nanopores.
Cyclically stretched cells are known to exhibit a strain-induced reorientation response. In this study, we comprehensively analyse this behaviour for human fibroblasts subjected to a highly non-uniform strain field within a polymethylsiloxane microdevice. We demonstrate a strong correlation between the strain amplitude and the degree of cell alignment perpendicular to the principal strain direction (stretching avoidance). Analogously, our results indicate that the strain gradient amplitude and direction also regulate this reorientation through a coordinated gradient avoidance response. We stipulate that strain gradients are thus biologically relevant mechanical cues sensed by cells. To gain insight into the underlying mechanosensing processes, we also studied focal adhesion reorganization and the effect of modulating myosin-II contractility. The extracted focal adhesion orientation distributions are similar to those obtained for the cell bodies, and their density is increased by the presence of stretching forces. Moreover, it was found that the myosin-II activity promoter calyculin-A has little effect on the cellular response, while the inhibitor blebbistatin suppresses cell and focal adhesion alignment and reduces focal adhesion density.These results confirm that similar internal structures involved in sensing and responding to strain direction and amplitude are also key players in strain gradient mechanosensing and avoidance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.