A high-power optically pumped semiconductor laser operating around 970 nm has been used as a pumping source for an upconversion laser based on an Er3+ doped LiLuF4 crystal. Nearly 0.5 W of continuous wave (cw) output power and 0.8 W peak power at a 50% pump duty cycle could be achieved at a wavelength of 552 nm. This represents the highest output power from a room temperature upconversion laser ever reported. Laser threshold and slope efficiency were measured to be below 100 mW of absorbed pump power and 30%, respectively. This experiment could be an important step along the route to realizing a compact and efficient upconversion laser emitting in the Watt level power regime.
We report on first-order quasi-phase-matched frequency doubling of picosecond pulses to the green, using a sample of periodically poled lithium niobate. In cw mode-locked operation, 330 mW of average green power was generated with an average conversion efficiency of ~52%. With a quasi-cw mode-locked pulse train an average conversion efficiency of ~65% was achieved, and 1.3 W of green power (average power within the 10-micros pulse envelope) was produced. At these powers there was no significant photorefractive damage, as confirmed by measured M(2) beam-quality factors of ~1.1 for both output fundamental and second-harmonic beams.
Periodically poled lithium niobate has been used in a singly resonant optical parametric oscillator pumped by a cw mode-locked Ti:sapphire laser. A tuning range of 1.15 to 2.4 microm was achieved when the pump was tuned, and this range was limited only by the mirror reflection bandwidth. Thresholds as low as 18 mW and an overall slope efficiency of 44% were observed, with average output powers of 130 mW (70 mW) for the signal (idler).
We demonstrate the generation of compressed, transform-limited 250-fs pulses, tunable in the near infrared, by means of synchronously pumped optical parametric oscillation in periodically poled lithium niobate. The almost 20-fold compression from the 4-ps pulse duration of the cw mode-locked Nd:YLF pump results in signal peak powers well in excess of the pump power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.