The umami taste receptor is a heterodimer composed of two members of the T1R taste receptor family: T1R1 and T1R3. It detects glutamate in humans, and is a more general amino acid detector in other species. We have constructed homology models of the ligand binding domains of the human umami receptor (based on crystallographic structures of the metabotropic glutamate receptor of the central nervous system). We have carried out molecular dynamics simulations of the ligand binding domains, and we find that the likely conformation is that T1R1 receptor protein exists in the closed conformation, and T1R3 receptor in the open conformation in the heterodimer. Further, we have identified the important binding interactions and have made an estimate of the relative free energies associated with the two glutamate binding sites.
Despite the general consensus concerning the role played by sodium channels in the molecular mechanism of local anesthetics, the potency of anaesthetic drugs also seems to be related with their solubility in lipid bilayers. In this respect, this work represents a thermodynamic study of benzocaine insertion into lipid bilayers of different compositions by means of molecular dynamics simulation. Thus, the free energy profiles associated with benzocaine insertion into symmetric lipid bilayers composed of different proportions of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylserine were studied. From the simulation results, a maximum in the free energy ( G) profile was measured in the region of the lipid/solution interface. This free energy barrier appears to be very much dependent on the lipid composition of the membrane. On the other hand, the minimum free energy ( G) within the bilayer remained almost independent of the lipid composition of the bilayer. By repeating the study at different temperatures, it was seen how the spontaneity of benzocaine insertion into the lipid bilayer is due to an increase in the entropy associated with the process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.