Despite the widespread use of graphs, little is known about how fast and how accurately we can extract information from them. Through a series of four behavioral experiments, we characterized human performance in “mental regression”, i.e. the perception of statistical trends from scatterplots. When presented with a noisy scatterplot, even as briefly as 100 ms, human adults could accurately judge if it was increasing or decreasing, fit a regression line, and extrapolate outside the original data range, for both linear and non-linear functions. Performance was highly consistent across those three tasks of trend judgment, line fitting and extrapolation. Participants’ linear trend judgments took into account the slope, the noise, and the number of data points, and were tightly correlated with the t-test classically used to evaluate the significance of a linear regression. However, they overestimated the absolute value of the regression slope. This bias was inconsistent with ordinary least squares (OLS) regression, which minimizes the sum of square deviations, but consistent with the use of Deming regression, which treats the x and y axes symmetrically and minimizes the Euclidean distance to the fitting line. We speculate that this fast but biased perception of scatterplots may be based on a “neuronal recycling” of the human visual capacity to identify the medial axis of a shape.
No abstract
The capacity to store information in working memory strongly depends upon the ability to recode the information in a compressed form. Here, we tested the theory that human adults encode binary sequences of stimuli in memory using a recursive compression algorithm akin to a “language of thought”, and capable of capturing nested patterns of repetitions and alternations. In five experiments, we probed memory for auditory or visual sequences using both subjective and objective measures. We used a sequence violation paradigm in which participants detected occasional violations in an otherwise fixed sequence. Both subjective ratings of complexity and objective sequence violation detection rates were well predicted by complexity, as measured by minimal description length (also known as Kolmogorov complexity) in the binary version of the “language of geometry”, a formal language previously found to account for the human encoding of complex spatial sequences in the proposed language. We contrasted the language model with a model based solely on surprise given the stimulus transition probabilities. While both models accounted for variance in the data, the language model dominated over the transition probability model for long sequences (with a number of elements far exceeding the limits of working memory). We use model comparison to show that the minimal description length in a recursive language provides a better fit than a variety of previous encoding models for sequences. The data support the hypothesis that, beyond the extraction of statistical knowledge, human sequence coding relies on an internal compression using language-like nested structures.
Although words and faces activate neighboring regions in the fusiform gyrus, we lack an understanding of how this category selectivity emerges during development. To investigate the organization of reading and face circuits at the earliest stage of reading acquisition, we measured the fMRI responses to words, faces, houses, and checkerboards in three groups of 60 children: 6-year-old pre-readers, 6-year-old beginning readers and 9-year-old advanced readers. The results showed that specific responses to written words were absent prior to reading, but emerged in beginning readers, irrespective of age. Likewise, specific responses to faces were weak or absent in pre-readers, but they emerged more slowly and continued to evolve in the 9-year-olds, primarily driven by age rather than by schooling. Crucially, the sectors of ventral visual cortex that become specialized words and faces harbored their own functional connectivity prior to reading acquisition: the VWFA with left-hemispheric spoken language areas, and the FFA with the contralateral region and the amygdalae. The results support the view that reading acquisition occurs through the recycling of a pre-existing but plastic circuit which, in pre-readers, already connects the VWFA site to other distant language areas. Furthermore, reading acquisition does not compete with the face system directly, through a pruning of preexisting face responses, but indirectly, by partially reorienting the slow growth of face responses to the right hemisphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.