Abstract:We report modal phase matched (MPM) second harmonic generation (SHG) in high-index contrast AlGaAs sub-micron ridge waveguides, by way of sub-mW continuous wave powers at telecommunication wavelengths. We achieve an experimental normalized conversion efficiency of ~14%/W/cm 2 , obtained through a careful subwavelength design supporting both the phase matching requirement and a significant overlap efficiency. Furthermore, the weak anomalous dispersion, robust fabrication technology and possible geometrical and thermal tuning of the device functionality enable a fully integrated multi-functional chip for several critical areas in telecommunications, including wavelength (time) division multiplexing and quantum entanglement. 2974-2976 (2004). 15. S. V. Rao, K. Moutzouris, and M. Ebrahimzadeh, "Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques," J. Opt. A, Pure Appl. Opt. 6(6), 569-584 (2004). 16. Y. Ishigame, T. Suhara, and H. Nishihara, "LiNbO(3) waveguide second-harmonic-generation device phase matched with a fan-out domain-inverted grating," Opt. Lett. 16(6), 375-377 (1991). 17. X. Yu, L. Scaccabarozzi, J. S. Harris Jr, P. S. Kuo, and M. M. Fejer, "Efficient continuous wave second harmonic generation pumped at 1.55 μm in quasi-phasematched AlGaAs waveguides," Opt. Express 13, 10742-10748 (2005). 18. A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, "Secondharmonic generation at λ = 1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching," Appl. tuning and tolerances," IEEE J. Quantum Electron. 28(11), 2631-2654 (1992). 22. P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, "Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1-xAs Bragg reflection waveguides," IEEE Photon.
©2011 Optical Society of America