Using a three stage model of hadron formation we calculate the change of the transverse momentum distribution of hadrons produced in semi-inclusive deep inelastic scattering (SIDIS) on nuclei. In the first stage after its interaction with the virtual photon, the struck quark propagates quasi free in the nuclear environment undergoing multiple collisions with nucleons. During this stage it can acquire transverse momentum. In the second stage a prehadron is formed which has a very small elastic cross section with the nucleons. In the third stage the prehadron turns into a hadron. For HERMES energies, prehadron elastic scatterings contribute little to p ⊥broadening. The acquired extra ∆p 2 ⊥ of hadrons can therefore be deduced entirely from the first stage of quasi free quark propagation with quark-nucleon collisions. We use this model to describe π-production on Ne, Kr, Xe and compare with the most recent HERMES preliminary data.
The quark-gluon plasma (QGP) can be explored in relativistic heavy ion collisions by the jet quenching signature, i.e. by the energy loss of a high energy quark or gluon traversing the plasma. We introduce a novel QCD evolution formalism in the leading logarithm approximation, where normal parton radiation is interleaved with scattering on the plasma gluons occuring at a similar time scale. The idea is elaborated in two approaches. One extends the DGLAP evolution equations for fragmentation functions to include scatterings in the medium, which facilitates numerical solutions for comparison with data and provides a basis for a Monte Carlo implementation. The other approach is more general by including also the transverse momentum dependence of the jet evolution, which allows a separation of the scales also for the scattering term and provides a basis for analytical investigations. The two approaches are shown to be related and give the same characteristic softening of the jet depending on the temperature of the plasma. A substantial effect is found at the RHIC energy and is further enhanced at LHC. Systematic studies of data on the energy loss could, therefore, demonstrate the existence of the QGP and probe its properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.