The ATLAS CollaborationDark matter particles, if sufficiently light, may be produced in decays of the Higgs boson. This Letter presents a statistical combination of searches for H → invisible decays where H is produced according to the Standard Model via vector boson fusion, Z( )H, and W/Z(had)H, all performed with the ATLAS detector using 36.1 fb −1 of pp collisions at a center-of-mass energy of √ s = 13 TeV at the LHC. In combination with the results at √ s = 7 and 8 TeV, an exclusion limit on the H → invisible branching ratio of 0.26 (0.17 +0.07 −0.05 ) at 95% confidence level is observed (expected). 1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). The distance between two objects in η-φ space is ∆R = (∆η) 2 + (∆φ) 2 . Transverse momentum is defined by p T = p sin θ.
We have studied three realistic benchmark geometries for a new far detector GAZELLE to search for long-lived particles at the SuperKEKB accelerator in Tsukuba, Japan. The new detector would be housed in the same building as Belle II and observe the same e + e − collisions. To assess the discovery reach of GAZELLE, we have investigated three new physics models that predict long-lived particles: heavy neutral leptons produced in tau lepton decays, axion-like particles produced in B meson decays, and new scalars produced in association with a dark photon, as motivated by inelastic dark matter. We do not find significant gains in the new physics discovery reach of GAZELLE compared to the Belle II projections for the same final states. The main reasons are the practical limitations on the angular acceptance and size of GAZELLE, effectively making it at most comparable to Belle II, even though backgrounds in the far detector could be reduced to low rates. A far detector for long-lived particles would be well motivated in the case of a discovery by Belle II, since decays inside GAZELLE would facilitate studies of the decay products. Depending on the placement of GAZELLE, searches for light long-lived particles produced in the forward direction or signals of a confining hidden force could also benefit from such a far detector. Our general findings could help guide the design of far detectors at future electron-positron colliders such as the ILC, FCC-ee or CEPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.