This note describes the design and testing of a programmable pulsatile flow pump using an Arduino micro-controller. The goal of this work is to build a compact and affordable system that can relatively easily be programmed to generate physiological waveforms. The system described here was designed to be used in an in-vitro set-up for vascular access hemodynamics research, and hence incorporates a gear pump that delivers a mean flow of 900 ml/min in a test flow loop, and a peak flow of 1106 ml/min. After a number of simple identification experiments to assess the dynamic behaviour of the system, a feed-forward control routine was implemented. The resulting system was shown to be able to produce the targeted representative waveform with less than 3.6% error. Finally, we outline how to further increase the accuracy of the system, and how to adapt it to specific user needs.
Ultrasound image velocimetry (UIV) allows for the non-intrusive measurement of a wide range of flows without the need for optical transparency. In this study, we used UIV to measure the local velocity field of a model drilling fluid that exhibits yield stress flow behavior. The radial velocity profile was used to determine the yield stress and the Herschel-Bulkley model flow index n and the consistency index k. Reference data were obtained using the conventional offline Couette rheometry. A comparison showed reasonable agreement between the two methods. The discrepancy in model parameters could be attributed to inherent differences between the methods, which cannot be captured by the three-parameter model used. Overall, with a whole flow field measurement technique such as UIV, we were able to quantify the complex rheology of a model drilling fluid. These preliminary results show that UIV can be used as a non-intrusive diagnostic for in situ, real-time measurement of complex opaque flow rheology.
SynopsisIn this paper, we describe a novel approach to determine the flow behavior index of a power-law fluid by means of a microfluidic device. The concept of this method is based on a mathematical analysis by Aronsson and Janfalk [Eur. J. Appl. Math. 3, 343-366 (1992)] of Hele-Shaw flow of power-law liquids. We implement this approach by driving a non-Newtonian fluid through a glass microfluidic chip with a 100:1 contraction. The flow in this chip satisfies the Hele-Shaw flow conditions in most of the device. Two conjugate p-Laplace equations describe the pressure and stream function in such flows. These equations depend on the flow behavior index, n. Therefore, by fitting the p-Laplace equation to the velocity field obtained from a micro particle image velocimetry measurement of the flow, the flow behavior index of the fluid in the chip can be determined. Because in practice, fluids rarely show perfectly inelastic power-law behavior, conditions under which the assumption of inelastic flow is valid were derived by analyzing Hele-Shaw flow of an Oldroyd-B fluid. The concept was tested using three different classes of model fluids, a Newtonian fluid, an inelastic power-law fluid, and a Boger fluid. In all three cases, satisfactory results were obtained, with values of n deviating at most 4% from values measured using conventional rheometry. The method presented here is expected to be potentially useful in online quality control in, for example, polymer or food processing. V C 2013 The Society of Rheology. [http://dx
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.