Radiation tests of 32 lm thick hydrogenated amorphous silicon n-i-p diodes have been performed using a high-energy 24 GeV proton beam up to fluences of 2 · 10 16 protons/cm 2 . The results are compared to irradiation of similar 1 lm and 32 lm thick n-i-p diodes using a proton beam of 405 keV at a fluence of 3 · 10 13 protons/cm 2 . All samples exhibited a drop of the photoconductivity and an increase in the dark leakage current under both high-and low-energy proton irradiation. An almost full recovery of the device performance was observed after a subsequent thermal annealing.
Thanks to their unique morphology, nanowires have enabled integration of materials in a way that was not possible before with thin film technology. In turn, this opens new avenues for applications in the areas of energy harvesting, electronics, and optoelectronics. This is particularly true for axial heterostructures, while core-shell systems are limited by the appearance of strain-induced dislocations. Even more challenging is the detection and understanding of these defects. We combine geometrical phase analysis with finite element strain simulations to quantify and determine the origin of the lattice distortion in core-shell nanowire structures. Such combination provides a powerful insight in the origin and characteristics of edge dislocations in such systems and quantifies their impact with the strain field map. We apply the method to heterostructures presenting single and mixed crystalline phase. Mixing crystalline phases along a nanowire turns out to be beneficial for reducing strain in mismatched core-shell structures.
PACS 29.40 Wk, 81.05 Gc, 85.60 Bt, Integrated particle sensors have been developed using thin-film on ASIC technology. For this purpose, hydrogenated amorphous silicon diodes, in various configurations, have been optimized for particle detection. These devices were first deposited on glass substrates to optimize the material properties and the dark current of very thick diodes (with thickness up to 50 µm). Corresponding diodes were later directly deposited on CMOS readout chips. These integrated particle sensors have been characterized using light pulse illumination and beta particle irradiation from 63 Ni and 90 Sr sources. Direct detection of single lowand high-energy beta particles have been demonstrated. The application of this new integrated particle sensor concept for medical imaging is also discussed.
Image sensors based on thin-film on CMOS technology (TFC) have been developed. In this approach, amorphous silicon (a-Si:H) detectors are vertically integrated on top of a CMOS readout chip so as to form monolithic image sensors. In order to reduce as far as possible the dark current density (J dark ) of the TFC sensors, we have focused on analyzing and understanding the behavior of J dark in this type of detectors. Edge effects along the periphery and at the corners of the pixel, due to the non planar configuration of the vertically integrated photodiodes, are found to be responsible for an increase of the dark current. A new and adapted solution for the minimization of J dark is proposed, which combines the use of a metal-i-p a-Si:H diode configuration with a deposition on top of an unpassivated CMOS chip. Values of J dark as low as 12 pA/cm 2 at a reverse polarization of V = -1 V are measured on such TFC sensors.
Hybrid structures are formed from materials of different families. Traditionally, group IV and III-V semiconductors have not been integrated together in the same device or application. In this work we present a new approach for obtaining Si-GaAs hybrid heterostructures in nanowires based on a combination of molecular beam epitaxy and plasma enhanced chemical vapor deposition. Crystalline Si segments are integrated into GaAs nanowires grown by the Ga-assisted growth method at temperatures as low as 250 °C. We find that one of the most important factors leading to the successful growth of Si segments on GaAs is the silane-hydrogen dilution, which affects the concentration of silicon and hydrogen-based radicals (SiHx with x < 3) in the plasma, and determines if the Si shell is amorphous, polycrystalline or crystalline, and also if the growth takes place in the axial and/or radial directions. This work opens the path for the successful integration of silicon and III-V materials in one single nanowire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.