The use of a high-temperature superconducting probe for in vivo magnetic resonance microscopy at 2 T is described. To evaluate the performance of the probe, a series of SNR comparisons are carried out. The SNR increased by a factor of 3.7 compared with an equivalent copper coil. Quantitative measures of the SNR gain are in good agreement with theoretical predictions. A number of issues that are unique to the application of HTS coils are examined, including the difficulty in obtaining homogenous excitation without degrading the SNR of the probe. The use of the HTS probe in transmit-receive mode is simple to implement but results in nonuniform excitation. The effect of using the probe in this mode of operation on the T 1 and T* 2 contrast is investigated. Methods for improving homogeneity are explored, such as employing a transmit volume coil. It is found that the cost of using an external transmit coil is an increased probe noise temperature and a reduced SNR by ϳ30%. Other important aspects of the probe are considered, including the effect of temperature on probe stability. Threedimensional in vivo imaging sets are acquired to assess the stability of the probe for long scans. High-resolution images of the rat brain demonstrate the utility of the probe for microscopy applications. Magn Reson Med 41:72
The design and operation of a high-temperature superconduct-ing (HTS) probe for magnetic resonance microscopy (MRM) at 400 MHz are presented. The design of the probe includes a Helmholtz coil configuration and a stable open-cycle cooling mechanism. Characterization of coil operating parameters is presented to demonstrate the suitability of cryo-cooled coils for MRM. Specifically, the performance of the probe is evaluated by comparison of signal-to-noise (SNR) performance with that of a copper Helmholtz pair, analysis of B 1 field homogeneity, and quantification of thermal stability. Images are presented to demonstrate the SNR advantage of the probe for typical MRM applications. Magn Reson Med 41:1032-1038, 1999. 1999 Wiley-Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.