This study is devoted to the formation of an n + p emitter for multicrystalline silicon (mc-Si) solar cells for photovoltaic (PV) application. The atomization technique has been used to make the emitter from H 3 PO 4 phosphoric acid as a doping source. The doping emulsion has been optimized using several organic solvents. H 3 PO 4 was mixed with one of these solutions: ethanol, 2-butanol, isopropanol alcohol and deionized water. The volume concentration of H 3 PO 4 does not exceed 20% of the total volume emulsion. The deposit characteristics of the emulsion change with the organic solvent. H 3 PO 4 : 2-butanol gives the best deposited layer with acceptable adherence and uniformity on silicon surface. Fourier transform infrared characterizations show the presence of organic and mineral phosphorous bonds in the formed layer. The obtained emitters are characterized by a junction depth in the range 0.2-0.75 µm and a sheet resistance of about 10-90 / . Such a low cost dopant source combined with a continuous spray process can effectively reduce the cost per Wp of the PV generator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.