ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF.
Providing sustainable energy storage is a challenge that must be overcome to replace fossil‐based fuels. Redox flow batteries are a promising storage option that can compensate for fluctuations in energy generation from renewable energy production, as their main asset is their design flexibility in terms of storage capacity. Current commercial options for flow batteries are mostly limited to inorganic materials such as vanadium, zinc, and bromine. As environmental aspects are one of the main drivers for developing flow batteries, assessing their environmental performance is crucial. However, this topic is still underexplored, as researchers have mostly focused on single systems with defined use cases and system boundaries, making the assessments of the overall technology inaccurate. This review was conducted to summarize the main findings of life cycle assessment studies on flow batteries with respect to environmental hotspots and their performance as compared to that of other battery systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.