Biomedical signals transmitted over the internet are usually tagged with patient information. Data hiding techniques such as steganography ensures the security of such data by hiding the data into signals. However, data hiding results in signal deterioration that might affect diagnosability. A novel technique which uses curvelet transforms to hide patient information into their ECG signal is presented. Curvelet transform decomposes the ECG signal into frequency sub-bands. A quantisation approach is used to embed patient data into coefficients whose values are around zero, in the high-frequency subband. Performance metrics provide the measure of watermark imperceptibility of the proposed approach. BER is used to measure the ability to extract patient data. The proposed approach is demonstrated on the MIT-BIH database and the observations validate that its performance is superior compared with the random locations approach. Although the performance of the proposed approach decreases as patient information size increases, the peak signal-to-noise ratio values are high. Therefore, the proposed approach can be used for the safe transfer of patient data.
ECG Steganography provides secured transmission of secret information such as patient personal information through ECG signals. This paper proposes an approach that uses discrete wavelet transform to decompose signals and singular value decomposition (SVD) to embed the secret information into the decomposed ECG signal. The novelty of the proposed method is to embed the watermark using SVD into the two dimensional (2D) ECG image. The embedding of secret information in a selected sub band of the decomposed ECG is achieved by replacing the singular values of the decomposed cover image by the singular values of the secret data. The performance assessment of the proposed approach allows understanding the suitable sub-band to hide secret data and the signal degradation that will affect diagnosability. Performance is measured using metrics like Kullback-Leibler divergence (KL), percentage residual difference (PRD), peak signal to noise ratio (PSNR) and bit error rate (BER). A dynamic location selection approach for embedding the singular values is also discussed. The proposed approach is demonstrated on a MIT-BIH database and the observations validate that HH is the ideal sub-band to hide data. It is also observed that the signal degradation (less than 0.6%) is very less in the proposed approach even with the secret data being as large as the sub band size. So, it does not affect the diagnosability and is reliable to transmit patient information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.