Abstract. Observations of atmospheric trace gases in the tropical upper troposphere (UT), tropical tropopause layer (TTL) and lower stratosphere (LS) require dedicated measurement platforms and instrumentation. Here we present a new limb-scanning Differential Optical Absorption Spectroscopy (DOAS) instrument developed for NASA’s Global Hawk unmanned aerial system (GH) during the Airborne Tropical TRopopause EXperiment (ATTREX). The mini-DOAS system is designed for automatic operation under unpressurized and unheated conditions at 14–18 km altitude, collecting scattered sunlight in three wavelength windows: UV (301–387 nm), visible (410–525 nm) and near infrared (900–1700 nm). A telescope scanning unit allows selection of a viewing angle around the limb, as well as real-time correction of the aircraft pitch. Due to the high altitude, solar reference spectra are measured using diffusors and direct sunlight. The DOAS approach allows retrieval of slant column densities (SCD) of O3, O4, NO2, and BrO with relative errors similar to other aircraft DOAS systems. Radiative transfer considerations show that the retrieval of trace gas mixing ratios from the observed SCD based on O4 observations, the most common approach for DOAS measurements, is inadequate for high-altitude observations, due to frequent presence of low altitude clouds. A newly developed technique that constrains the radiative transfer (RT) by comparing in-situ and DOAS O3 observations overcomes this issue. Extensive sensitivity calculations show that the novel O3-scaling technique allows the retrieval of BrO and NO2 mixing ratios at high accuracies of 0.3–0.6 ppt and 15 ppt, respectively. The BrO and NO2 mixing ratios and vertical profiles observed during ATTREX thus provide new insights into ozone and halogen chemistry in the UT, TTL, and LS.
Abstract. We report measurements of CH 4 (measured in situ by the Harvard University Picarro Cavity Ringdown Spectrometer (HUPCRS) and NOAA Unmanned Aircraft System Chromatograph for Atmospheric Trace Species (UCATS) instruments), O 3 (measured in situ by the NOAA dual-beam ultraviolet (UV) photometer), NO 2 , BrO (remotely detected by spectroscopic UV-visible (UV-vis) limb observations; see the companion paper of Stutz et al., 2016), and of some key brominated source gases in whole-air samples of the Global Hawk Whole Air Sampler (GWAS) instrument within the subtropical lowermost stratosphere (LS) and the tropical upper troposphere (UT) and tropopause layer (TTL). The measurements were performed within the framework of the NASA-ATTREX (National Aeronautics and Space Administration -Airborne Tropical Tropopause Experiment) project from aboard the Global Hawk (GH) during six deployments over the eastern Pacific in early 2013. These measurements are compared with TOMCAT/SLIMCAT (Toulouse Off-line Model of Chemistry And Transport/Single Layer Isentropic Model of Chemistry And Transport) 3-D model simulations, aiming at improvements of our understanding of the bromine budget and photochemistry in the LS, UT, and TTL.Changes in local O 3 (and NO 2 and BrO) due to transport processes are separated from photochemical processes in intercomparisons of measured and modeled CH 4 and O 3 . After excellent agreement is achieved among measured and simulated CH 4 and O 3 , measured and modeled [NO 2 ] are found to closely agree with ≤ 15 ppt in the TTL (which is the detection limit) and within a typical range of 70 to 170 ppt in the subtropical LS during the daytime. Measured [BrO] ranges between 3 and 9 ppt in the subtropical LS. In the TTL, [BrO] ] is found to increase from a mean of 2.63 ± 1.04 ppt for potential temperatures (θ ) in the range of 350-360 K to 5.11 ± 1.57 ppt for θ = 390 − 400 K, whereas in the subtropical LS (i.e., when [CH 4 ] ≤ 1790 ppb), it reaches 7.66 ± 2.95 ppt for θ in the range of 390-400 K. Finally, for the eastern Pacific (170-90 • W), the TOMCAT/SLIMCAT simulations indicate a net loss of ozone of −0.3 ppbv day −1 at the base of the TTL (θ = 355 K) and a net production of +1.8 ppbv day −1 in the upper part (θ = 383 K).
Abstract. Observations of atmospheric trace gases in the tropical upper troposphere (UT), tropical tropopause layer (TTL), and lower stratosphere (LS) require dedicated measurement platforms and instrumentation. Here we present a new limb-scanning Differential Optical Absorption Spectroscopy (DOAS) instrument developed for NASA's Global Hawk (GH) unmanned aerial system and deployed during the Airborne Tropical TRopopause EXperiment (ATTREX). The mini-DOAS system is designed for automatic operation under unpressurized and unheated conditions at 14–18 km altitude, collecting scattered sunlight in three wavelength windows: UV (301–387 nm), visible (410–525 nm), and near infrared (900–1700 nm). A telescope scanning unit allows selection of a viewing angle around the limb, as well as real-time correction of the aircraft pitch. Due to the high altitude, solar reference spectra are measured using diffusors and direct sunlight. The DOAS approach allows retrieval of slant column densities (SCDs) of O3, O4, NO2, and BrO with relative errors similar to other aircraft DOAS systems. Radiative transfer considerations show that the retrieval of trace gas mixing ratios from the observed SCD based on O4 observations, the most common approach for DOAS measurements, is inadequate for high-altitude observations. This is due to the frequent presence of low-altitude clouds, which shift the sensitivity of the O4 SCD into the lower atmosphere and make it highly dependent on cloud coverage. A newly developed technique that constrains the radiative transfer by comparing in situ and DOAS O3 observations overcomes this issue. Extensive sensitivity calculations show that the novel O3-scaling technique allows the retrieval of BrO and NO2 mixing ratios at high accuracies of 0.5 and 15 ppt, respectively. The BrO and NO2 mixing ratios and vertical profiles observed during ATTREX thus provide new insights into ozone and halogen chemistry in the UT, TTL, and LS.
Abstract. Nitrous acid (HONO) photolysis is an important source of hydroxyl radicals (OH) in the lower atmosphere, in particular in winter when other OH sources are less efficient. The nighttime formation of HONO and its photolysis in the early morning have long been recognized as an important contributor to the OH budget in polluted environments. Over the past few decades it has become clear that the formation of HONO during the day is an even larger contributor to the OH budget and additionally provides a pathway to recycle NO x . Despite the recognition of this unidentified HONO daytime source, the precise chemical mechanism remains elusive. A number of mechanisms have been proposed, including gas-phase, aerosol, and ground surface processes, to explain the elevated levels of daytime HONO. To identify the likely HONO formation mechanisms in a wintertime polluted rural environment we present LP-DOAS observations of HONO, NO 2 , and O 3 on three absorption paths that cover altitude intervals from 2 to 31, 45, and 68 m above ground level (a.g.l.) during the UBWOS 2012 experiment in the Uintah Basin, Utah, USA. Daytime HONO mixing ratios in the 2-31 m height interval were, on average, 78 ppt, which is lower than HONO levels measured in most polluted urban environments with similar NO 2 mixing ratios of 1-2 ppb. HONO surface fluxes at 19 m a.g.l., calculated using the HONO gradients from the LP-DOAS and measured eddy diffusivity coefficient, show clear upward fluxes. The hourly average vertical HONO flux during sunny days followed solar irradiance, with a maximum of (4.9 ± 0.2) × 10 10 molec. cm −2 s −1 at noontime. A photostationary state analysis of the HONO budget shows that the surface flux closes the HONO budget, accounting for 63 ± 32 % of the unidentified HONO daytime source throughout the day and 90 ± 30 % near noontime. This is also supported by 1-D chemistry and transport model calculations that include the measured surface flux, thus clearly identifying chemistry at the ground as the missing daytime HONO source in this environment. Comparison between HONO surface flux, solar radiation, NO 2 and HNO 3 mixing ratios, and results from 1-D model runs suggest that, under high NO x conditions, HONO formation mechanisms related to solar radiation and NO 2 mixing ratios, such as photo-enhanced conversion of NO 2 on the ground, are most likely the source of daytime HONO. Under moderate to low NO 2 conditions, photolysis of HNO 3 on the ground seems to be the main source of HONO.
Abstract.Nitrous acid (HONO) photolysis is an important source of hydroxyl radicals (OH) in the lower atmosphere, in particular in winter when other OH sources are less efficient. The nighttime formation of HONO and its photolysis in the early morning have long been recognized as an important contributor to the OH budget in polluted environments. Over the past few decades it has become clear that the formation of HONO during the day is an even larger contributor to the OH budget, and additionally 5 provides a pathway to recycle NO x . Despite the recognition of this unidentified HONO daytime source, the precise chemical mechanism remains elusive. A number of mechanisms have been proposed, including gas-phase, aerosol, and ground surface processes, to explain the elevated levels of daytime HONO. To identify the likely HONO formation mechanisms in a wintertime polluted rural environment we present LP-DOAS observations of HONO, NO 2 , and O 3 on three absorption paths that cover altitude intervals from 2 m to 31 m, 45 m, and 68 m agl during the UBWOS 2012 experiment in the Uintah Basin, Utah, 10 USA. Daytime HONO mixing ratios in the 2 -31 m height interval were, on average, 78 ppt, which is lower than HONO levels measured in most polluted urban environments with similar NO 2 mixing ratios of 1-2 ppb. HONO surface fluxes at 16 m agl, calculated using the HONO gradients from the LP-DOAS and measured eddy diffusivity coefficient, show clear upward fluxes. The hourly average vertical HONO flux during sunny days followed solar irradiance, with a maximum of (4.9±0.2) x10 10 molec. cm
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.