The Solar System is a complex and fascinating dynamical system. This is the first textbook to describe comprehensively the dynamical features of the Solar System and to provide students with all the mathematical tools and physical models they need to understand how it works. It is a benchmark publication in the field of planetary dynamics and destined to become a classic. Clearly written and well illustrated, Solar System Dynamics shows how a basic knowledge of the two- and three-body problems and perturbation theory can be combined to understand features as diverse as the tidal heating of Jupiter's moon Io, the origin of the Kirkwood gaps in the asteroid belt, and the radial structure of Saturn's rings. Problems at the end of each chapter and a free Internet Mathematica® software package are provided. Solar System Dynamics provides an authoritative textbook for courses on planetary dynamics and celestial mechanics. It also equips students with the mathematical tools to tackle broader courses on dynamics, dynamical systems, applications of chaos theory and non-linear dynamics.
Recent images of the disks of dust around the young stars HR 4796A (Jayawardhana et al. 1998;Koerner et al. 1998;Schneider et al. 1999;Telesco et al. 1999) and Fomalhaut (Holland et al. 1998) show, in each case, a double-lobed feature that may be asymmetric (one lobe may be brighter than the other). A symmetric double-lobed structure is that expected from a disk of dust with a central hole that is observed nearly edge-on (i.e., close to the plane of the disk). This paper shows how the gravitational influence of a second body in the system with an eccentric orbit would cause a brightness asymmetry in such a disk by imposing a "forced eccentricity" on the orbits of the constituent dust particles, thus shifting the center of symmetry of the disk away from the star and causing the dust near the forced pericenter of the perturbed disk to glow. Dynamic modeling of the HR 4796 disk shows that its ∼ 5% brightness asymmetry could be the result of a forced eccentricity as small as 0.02 imposed on the disk by either the binary companion HR 4796B, or by an unseen planet close to the inner edge of the disk. Since it is likely that a forced eccentricity of 0.01 or higher would be imposed on a disk in a system in which there are planets, but no binary companion, the corresponding asymmetry in the disk's structure could serve as a sensitive indicator of these planets that might otherwise remain undetected.
When viewed in optical starlight scattered by dust, the nearly edge-on debris disk surrounding the A5V star beta Pictoris (distance 19.3 pc; ref. 1) extends farther than 1,450 au from the star. Its large-scale complexity has been well characterized, but the detailed structure of the disk's central approximately 200-au region has remained elusive. This region is of special interest, because planets may have formed there during the star's 10-20-million-year lifetime, perhaps resulting in both the observed tilt of 4.6 degrees relative to the large-scale main disk and the partial clearing of the innermost dust. A peculiarity of the central disk (also possibly related to the presence of planets) is the asymmetry in the brightness of the 'wings', in which the southwestern wing is brighter and more extended at 12 microm than the northeastern wing. Here we present thermal infrared images of the central disk that imply that the brightness asymmetry results from the presence of a bright clump composed of particles that may differ in size from dust elsewhere in the disk. We suggest that this clump results from the collisional grinding of resonantly trapped planetesimals or the cataclysmic break-up of a planetesimal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.