The contribution of different sources to the circumsolar dust cloud (known as the zodiacal cloud) can be deduced from diagnostic observations. We used the Spitzer Space Telescope to observe the diffuse thermal emission of the zodiacal cloud near the ecliptic. Several structures were identified in these observations, including previously known asteroid dust bands, which are thought to have been produced by recent asteroid collisions, and cometary trails. Interestingly, two of the detected dust trails, denoted t1 and t2 here, cannot be linked to any known comet. Trails t1 and t2 represent a much larger integrated brightness than all known cometary trails combined and may therefore be major contributors to the circumsolar dust cloud. We used our Spitzer observations to determine the orbits of these trails and were able to link them to two (''orphan'' or type II) trails that were discovered by the Infrared Astronomical Satellite (IRAS ) in 1983. The orbits of trails t1 and t2 that we determined by combining the Spitzer and IRAS data have semimajor axes, eccentricities, and inclinations like those of the main-belt asteroids. We therefore propose that trails t1 and t2 were produced by very recent (P100 kyr old) collisional breakups of small, P10 km diameter main-belt asteroids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.