Forces exerted by a leg in support and propulsion can vary considerably when animals stand upon or traverse irregular terrains. We characterized the responses of the cockroach tibial campaniform sensilla, mechanoreceptors which encode force via strains produced in the exoskeleton, by applying forces to the leg at controlled magnitudes and rates. We also examined how sensory responses are altered in the presence of different levels of static load. All receptors exhibit phasico-tonic discharges that reflect the level and rate of force application. Our studies show that: (1) tonic discharges of sensilla can signal the level of force, but accurate encoding of static loads may be affected by substantial receptor adaptation and hysteresis; (2) the absolute tonic sensitivities of receptors decrease when incremental forces are applied at different initial load levels; (3) phasic discharges of sensilla accurately encode the rate of force application; and (4) sensitivities to changing rates of force are strictly preserved in the presence of static loads. These findings imply that discharges of the sensilla are particularly tuned to the rate of change of force at all levels of leg loading. This information could be utilized to adapt posture and walking to varying terrains and unexpected perturbations.
We examined the mechanisms underlying force feedback in cockroach walking by recording sensory and motor activities in freely moving animals under varied load conditions. Tibial campaniform sensilla monitor forces in the leg via strains in the exoskeleton. A subgroup (proximal receptors) discharge in the stance phase of walking. This activity has been thought to result from leg loading derived from body mass. We compared sensory activities when animals walked freely in an arena or on an oiled glass plate with their body weight supported. The plate was oriented either horizontally (70-75% of body weight supported) or vertically (with the gravitational vector parallel to the substrate). Proximal sensilla discharged following the onset of stance in all load conditions. In addition, activity was decreased in the middle third of the stance phase when the effect of body weight was reduced. Our results suggest that sensory discharges early in stance result from forces generated by contractions of muscles that press the leg as a lever against the substrate. These forces can unload legs already in stance and assure the smooth transition of support among the limbs. Force feedback later in stance may adjust motor output to changes in leg loading.
To examine how walking patterns are adapted to changes in load, we recorded leg movements and muscle activities when cockroaches (Periplaneta americana) walked upright and on an inverted surface. Animals were videotaped to measure the hindleg femoro-tibial joint angle while myograms were taken from the tibial extensor and flexor muscles. The joint is rapidly flexed during swing and extended in stance in upright and inverted walking. When inverted, however, swing is shorter in duration and the joint traverses a range of angles further in extension. In slow upright walking, slow flexor motoneurons fire during swing and the slow extensor in stance, although a period of co-contraction occurs early in stance. In inverted walking, patterns of muscle activities are altered. Fast flexor motoneurons fire both in the swing phase and early in stance to support the body by pulling the animal toward the substrate. Extensor firing occurs late in stance to propel the animal forward. These findings are discussed within the context of a model in which stance is divided into an early support and subsequent propulsion phase. We also discuss how these changes in use of the hindleg may represent adaptations to the reversal of the effects of gravity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.