Cells and axons that supply direct afferent input to the medial nucleus of the trapezoid body are described. Afferents were intracellularly labeled in brainstem tissue slices of two rodent and two bat species. The main afferents are calyciferous axons from globular bushy cells of the ventral cochlear nucleus. Calyciferous axons were highly consistent across species, projecting directly from the cochlear nucleus, across the midline in the trapezoid body, to the contralateral medial nucleus of the trapezoid body. Within the target nucleus, a typical axon turned sharply away from horizontal to form a large ending, the calyx of Held, around the soma of a single principal cell. Three groups of calyciferous axons were classified based on the path taken from bend to calyx. In subjects younger than four weeks, single axons often formed two calyces, each on a different cell. These calyx pairs were often found on adjacent or vertically aligned cells. In older animals, calyx pairs were more closely aligned, but fewer double calyx axons were seen. A secondary focus of this study was the system of thin collateral branches that characterizes calyciferous axons in all species. The projection patterns of these collaterals suggest that calyciferous axons may provide ascending input to periolivary cell groups with descending projections. In addition to calyciferous afferents, labeled cells that provide input to the medial nucleus of the trapezoid body from adjacent periolivary cell groups are described. Also described is a type of afferent that descends from the level of the lateral lemniscus to the medial nucleus of the trapezoid body.
An in vitro preparation of the crayfish nervous system has been utilized to study an interjoint reflex pathway and its variability during rhythmic locomotor activity. The coxo-basal chordotonal organ (CBCO) is a joint stretch receptor spanning the second joint of walking legs in crayfish, where it encodes joint movements and position. Mechanical stimulation (stretch and release) of the CBCO and electrical stimulation of the CBCO nerve elicits reflex responses in promotor and remotor motor neurons innervating muscles moving the basal thoraco-coxal (TC) leg joint. Promotor and remotor motor neurons receive monosynaptic excitatory inputs from at least four CBCO afferents, including both stretch- and release-sensitive CBCO afferents. In a tonic preparation, in which there is no tendency to produce alternating bursts of activity in antagonistic motor neurons, the reflex responses were evoked during each cycle of imposed movement. However, when the preparation became rhythmic and produced bouts of fictive locomotion, the reflex responses were unstable and their gain was phasically modulated. Paired recordings indicate that such a modulation of the monosynaptic interjoint reflex could be due to both a phasic change in the excitability of the motor neurons and presynaptic inhibition that reduces the excitatory input from CBCO primary afferents.
The neuropeptide allatostatin decreases the spike rate in response to time-varying stretches of two different crustacean mechanoreceptors, the gastropyloric receptor 2 in the crab Cancer borealis and the coxobasal chordotonal organ (CBCTO) in the crab Carcinus maenas. In each system, the decrease in firing rate is accompanied by an increase in the timing precision of spikes triggered by discrete temporal features in the stimulus. This was quantified by calculating the standard deviation or "jitter" in the times of individual identified spikes elicited in response to repeated presentations of the stimulus. Conversely, serotonin increases the firing rate but decreases the timing precision of the CBCTO response. Intracellular recordings from the afferents of this receptor demonstrate that allatostatin increases the conductance of the neurons, consistent with its inhibitory action on spike rate, whereas serotonin decreases the overall membrane conductance. We conclude that spike-timing precision of mechanoreceptor afferents in response to dynamic stimulation can be altered by neuromodulators acting directly on the afferent neurons.
Crustacean motor pattern-generating networks have played central roles in understanding the cellular and network bases of rhythmic motor patterns for over half a century. We review here the four best investigated of these systems: the stomatogastric, ventilatory, cardiac, and swimmeret systems. Generally applicable observations arising from this work include (1) neurons with active, endogenous cell properties (endogenous bursting, postinhibitory rebound, plateau potentials), (2) nonhierarchical (distributed) network synaptic connectivity patterns characterized by high levels of inter-neuronal connections, (3) nonspiking neurons and graded transmitter release, (4) multiple modulatory inputs, (5) networks that produce multiple patterns and have flexible boundaries, and (6) peripheral properties (proprioceptive feedback loops, low-frequency muscle filtering) playing an important role in motor pattern generation or expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.