The study evaluated the changes in bacterial numbers across a full-scale membrane bioreactor (MBR) blackwater reuse system. Flow cytometry was used to quantify total and intact bacterial concentrations across the treatment train and during distribution of the recycled water. Membrane passage reduced bacterial numbers by up to 5-log units resulting in coliform-free permeate. A 2-log increase in bacterial cell concentration was subsequently observed after the granular activated carbon unit followed by a reduction in intact cells after chlorination, which corresponds to an overall intact bacteria removal of 3.4-log units. In the distribution network, the proportion of intact cells greatly depended on the free chlorine residual, with decreasing residual enabling regrowth. An initial target of 0.5 mg L free chlorine ensured sufficient suppression of intact cells for up to 14 days (setting the time intervals for system flushes at times of low water usage). Bacterial regrowth was only observed when the free chlorine concentration was below 0.34 mg L. Such loss of residual chlorine mainly applied to distant points in the distribution network from the blackwater reuse treatment plant (BRTP). Flushing these network points for 5 min did not substantially reduce cell numbers. At points closer to the BRTP, on the other hand, flushing reduced cell numbers by up to 1.5-log units concomitant with a decreasing proportion of intact cells. Intact cell concentrations did not correlate with DOC, total nitrogen, or soluble reactive phosphate, but it was shown that dead biomass could be efficiently converted into new biomass within seven days.
The potential health risks associated with sludge cake application to agricultural land are managed by controlling the levels of Escherichia coli (E. coli) bacteria which indicate the risk of pathogen transfer. Analyses undertaken following postdigestion sludge dewatering have shown unpredictable levels of E. coli increase in stored sludge cake. Presently there is limited understanding on environmental parameters controlling the indicator bacteria density in storage and the contributory effects dewatering may have. This review aims to establish the state of current knowledge on innate and environmental factors influencing E. coli dynamics and survival in biosolids. A key factor identified is the effect of mechanical dewatering processes, which transform the sludge matrix environmental conditions through the increased availability of growth factors (e.g. nutrient and oxygen). Examples of storage practices from the agricultural and food industries are also discussed as successful methods to inhibit bacterial growth and survival, which could be extrapolated to the biosolids sector to regulate E. coli concentrations.
Achieving microbial compliance during biosolids storage can be complicated by the unpredictable increase of Escherichia coli. Thermal treatment during anaerobic digestion (AD) and the effects of dewatering may be a significant factor contributing to indicator survival. Shear forces present during dewatering may promote cell damage, releasing nutrient for E. coli growth. The effect of cell damage on E. coli survival was assessed in laboratory-scale thermal and physical disruption experiments. E. coli growth curves for disrupted treatments were compared with control conditions and quantified using flow cytometry and membrane filtration techniques. A significant difference (p < 0.05) in the level of damaged cells between control and disrupted conditions was observed. For thermal and physical disruption treatments, the peak of E. coli concentration increased significantly by 1.8 Log and 2.4 Log (CFU (colony forming units) g−1 DS), respectively, compared with control treatments. Research findings contribute to the understanding of bacterial growth and death dynamics in biosolids.
E. coli survival in biosolids storage may present a risk of non-compliance with guidelines designed to ensure a quality product safe for agricultural use. The storage environment may affect E. coli survival but presently, storage characteristics are not well profiled. Typically biosolids storage environments are not actively controlled or monitored to support increased product quality or improved microbial compliance. This two-phased study aimed to identify the environmental factors that control bacterial concentrations through a long term, controlled monitoring study (phase 1) and a field-scale demonstration trial modifying precursors to bacterial growth (phase 2). Digested and dewatered biosolids were stored in operational-scale stockpiles to elucidate factors controlling E. coli dynamics. E. coli concentrations, stockpile dry solids, temperature, redox and ambient weather data were monitored. Results from ANCOVA analysis showed statistically significant (p <0.05) E. coli reductions across storage periods with greater die-off in summer months. Stockpile temperature had a statistically significant effect on E. coli survival. A 4.5 Log reduction was measured in summer (maximum temperature 31°C). In the phase 2 modification trials, covered stockpiles were able to maintain a temperature >25°C for a 28 day period and achieved a 3.7 Log E. coli reduction. In winter months E. coli suppression was limited with concentrations >6 Log10 CFU g -1 DS maintained. The ANCOVA analysis has identified the significant role that physical environmental factors, such as stockpile temperature, has on E. coli dynamics and the opportunities for control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.