Cartilaginous tissue has limited capacity for regeneration after damage, since the natural repair process leads to the formation of fibrocartilaginous tissue which does not have the resistance and capability of deformation under load, typical of hyaline cartilage which covers the articular surfaces. The possibility of transplanting human chondrocytes for cartilage reconstruction has been demonstrated in orthopaedics. The scope of our study was to evaluate the possibility of cultivating and expanding human chondrocytes seeded on a pure equine type I collagen support. Human articular cartilaginous cells multiplied and grew on a type I collagen substrate with production of extracellular matrix. This chondrocyte culture showed a correct morphology and phenotype as shown by alcian-PAS staining to indicate the presence of mucopolysaccharides and by immunohistochemical methods to identify type II collagen. The use of scaffolds may lead to improvement in the surgical technique, by making it possible to hold the cells physically in the area to be repaired and by allowing optimum spatial adaptation inside injuries of all shapes.
The scope of our study is to evaluate the possibility of cultivating and expanding human chondrocytes and seeding them on pure equine type I collagen support. Our results show that human articular cartilaginous cells can multiply and grow on type I collagen substrate with production of extracellular matrix. This type of chondrocyte culture on a support can be used for repairing cartilaginous lesions since they show a correct morphology (evaluated by cytological and histological methods) and a suitable differentiation and phenotype as shown by Alcian PAS staining to indicate the presence of mucopolysaccharides, and immunohistochemical methods to identify collagen II. We believe that these chondrocyte cultures on this biomaterial can be used for repairing cartilaginous lesions with improvement of surgical technique; the support allows adhesion of the chondrocytes to the cartilaginous lesion and a mallebility that favours optimum spatial adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.