Runoff was collected from 4 roofs, 3 courtyards and 6 streets on an experimental catchment in central Paris, and analysed for SS, VSS, COD, BOD5, hydrocarbons, heavy metals both as regards dissolved and particle fractions. Whereas street runoff showed important SS, COD and hydrocarbon loads, roof runoff was noticeable for its high concentration of heavy metals. These concentrations in comparison with water quality standards enhance the importance of runoff pollution. The use of sample settling for runoff treatment is discussed on the basis of data concerning the distribution between dissolved and particle bound pollution loads, along with settling velocity measurements. Runoff particles were found to be highly contaminated with heavy metals and hydrocarbons, which raised the problem of sludge disposal.
Urban surface contamination, by atmospheric deposits as well as human activities, is a major concern for urban pollution management. Besides coarse street deposits which are clearly perceived and easily removed, suspended solid (SS) surface loads and contamination by heavy metals and hydrocarbons are rarely assessed although they could be of major importance with regards to combined or separate server overflow (CSO and SSO) impacts. Both dry and wet vacuum sampling procedures have been first compared, in the laboratory, using dry and sieved clay or street deposits. Then the wet vacuum sampling procedure has been refined, coupling the injection of water and the hand-brushing of the surface prior to its vacuum cleaning, and evaluated on a car parking area close to the University. Finally this procedure has been assessed in Béarn Street within the 'Le Marais' district in Paris centre, and 34 samples have been analysed for metal and eight for aromatic hydrocarbon contamination. Heavy metal concentrations (0.1-1.7 g kg-1 dry wt. Cu, 0.9-6.1 g kg-1 dry wt. Pb and 1.5-4.6 g kg-1 dry wt. Zn) within street deposit samples collected in Paris centre, indicate a high contamination, especially for copper and zinc, as compared to reported data. Total polyaromatic hydrocarbons (PAHs) are in the 3-11 mg kg-1 dry wt. range, thus approximately 10 times less contaminated than dry atmospheric deposits. This paper presents data obtained and discusses the difficulties encountered when sampling street deposits in busy areas of a city like Paris. The water jet street cleaning procedure used by Paris city workers was tested for its efficiency, by comparison of surface loads before and after the cleaning procedure. Although solids cleaning efficiency is highly variable (20-65%) and somewhat higher for particles larger than 100 microns, particulate metal cleaning efficiency is even more variable (0-75%) and particulate PAHs appear not to be significantly removed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.