The programs WYK_Stal and Bi-Growth, developed at AGH-UST, Kraków, Poland, were used for simulating the refining process, the formation of non-metallic inclusions, and their growth. The Fe-Y-Al-O-S-Ca system in pre-oxidized steel was analyzed, where yttrium formed precipitates from both O and S. When first Al and second Y were added to steel, the proportion of Al2O3 inclusions remained constant. This resulted in higher yttrium losses for oxide formation, whereas the sulfur content promoted sulfide phase formation. The introduction of yttrium at the end of refining contributed to reducing the consumption of this element in the non-metallic phase formation. The addition of aluminum and then calcium were sufficient to achieve a high degree of deoxidation and desulfurization. Calculations performed with WYK_Stal for both (a) and (c) versions of the model showed that the sulfide phase was constituted by CaS and FeS (model c) and CaS (model (a)). The participation of the calcium sulfide phase turned out to be dominant in the inclusions. Their presence was also identified in the slag phase. Simulations of the growth of complex oxide and oxo-sulfide inclusions using the Bi_Growth program showed that the yttrium content of the steel has a decisive role in the formation of complex oxide inclusions and the final oxygen content of the steel. In contrast, for the growth of oxide-sulfide inclusions, the character of growth is determined by the sulfur content of steel.
The current work deals with the phenomenon of non-metallic inclusions as a result of the addition of yttrium to the liquid steel as an alloying component. The order of introducing individual components determines their final content in steel, and this problem was analyzed using the WYK_Stal program developed at AGH. The study of Y 2 O 3 and Y 2 S 3 phase precipitation and the relationship between the addition of Y, Al, Ca, O, and S in molten steel was studied using the thermodynamic models based on Wagner's formalism. The introductions of yttrium prior to aluminum brought about huge losses, and it mainly occurred due to the formation of oxides. The low oxygen content in the metal bath promotes the formation of yttrium sulphide. When yttrium is introduced after aluminum and calcium, yttrium is used for the precipitation of its sulfide, and in this way the manganese sulfide formation is reduced.
The quality of rail steel is conditioned by its high mechanic qualities, which greatly depend on the presence of undesired nonmetallic inclusions. The paper is devoted to the segregation of components, mainly sulphur, and the formation of manganese sulphide in the process of steel solidification, at the casting rate of 100 and 500 K/min. Sulphur is a steel component which disadvantageously influences its numerous parameters. The oxide-sulphide and sulphide precipitations cause cracks and lower the strength of the material. This phenomenon was modeled with the use of author’s computer program based on Matsumiya interdendritic microsegregation model. The main assumptions of this model and thermodynamic conditions of inclusion formation during casting of steel are discussed in this paper. Two cases were analyzed: in the first one the MnS was assumed to form a pure and constant compound, whereas in the other one the manganese sulfide was precipitated as a component of a liquid oxide solution, and its activity was lower than unity. The final conclusion is that chemical composition of steel is the major parameter deciding about the formation of MnS inclusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.