The capillary break-up of a polymer solution evolves via a series of stages. After the initial instability a long-lived cylindrical filament is formed, which thins exponentially in time, while the flow is purely extensional. During the final stages of the thinning process, at which the polymers are stretched sufficiently for the filament to become unstable to a Rayleigh-Plateau-like instability, a complex flow pattern develops, which we describe here. Achieving a high spatial resolution well below the optical Rayleigh limit, we describe both the formation of individual droplets as well as that of periodic patterns. Following the periodic instability, a blistering pattern appears, with different generations of smaller droplets. At sufficiently high polymer concentrations, the filament does not break at all, but a solid polymeric fiber with a thickness well below a micron remains. The experiments were performed for various polymer and solvent systems, all of which showed the same qualitative behavior for most of the observed features.
We investigated the flow profile of a polymer solution in a thinning capillary bridge. Fluorescent tracer particles with a diameter of 3 μm were used to visualize the flow. The cylindrical shape of the filament introduced strong optical abberations that could be corrected for, and we were able to characterize the flow in filaments with a thickness ranging from 150 to 30 μm. In the first regime when the filament was still sufficiently large, we used a PIV algorithm to deduce the flow field. At later stages when the number of particles in the observation plane decreased a PTV algorithm was used. The main two results of our measurements are as follows. First, the flow profile at the formation of the cylindrical filament is highly inhomogeneous and there is only flow in the outer parts of the filament. Second, we find that in most parts of the regime, where the temporal radius of the thinning filament can be fitted with an exponential law the flow indeed is purely extensional.
Established and already commercialized energetic materials, such as those based on Ni/Al for joining, lack the adequate combination of high energy density and ductile reaction products. To join components, this combination is required for mechanically reliable bonds. In addition to the improvement of existing technologies, expansion into new fields of application can also be anticipated which triggers the search for improved materials. Here, we present a comprehensive characterization of the key parameters that enables us to classify the Ru/Al system as new reactive material among other energetic systems. We finally found that Ru/Al exhibits the unusual integration of high energy density and ductility. For example, we measured reaction front velocities up to 10.9 (±0.33) ms−1 and peak reaction temperatures of about 2000 °C indicating the elevated energy density. To our knowledge, such high temperatures have never been reported in experiments for metallic multilayers. In situ experiments show the synthesis of a single-phase B2-RuAl microstructure ensuring improved ductility. Molecular dynamics simulations corroborate the transformation behavior to RuAl. This study fundamentally characterizes a Ru/Al system and demonstrates its enhanced properties fulfilling the identification requirements of a novel nanoscaled energetic material.
The effect of polymers on the bouncing behavior of droplets in a highly viscous, vertically shaken silicone oil bath was investigated in this study. Droplets of a sample liquid were carefully placed on a vibrating bath that was maintained well below the threshold of Faraday waves. The bouncing threshold of the plate acceleration depended on the acceleration frequency. For pure water droplets and droplets of aqueous polymer solutions, a minimum acceleration amplitude was observed in the acceleration threshold curves as a function of frequency. The bouncing acceleration amplitude for a droplet of a dilute aqueous polymer solution was higher than the acceleration amplitude for a pure water droplet. Measurements of the center of mass trajectory and the droplet deformations showed that the controlling parameter in the bouncing process was the oscillating elongational rate of the droplet. This parameter can be directly related to the elongational viscosity of the polymeric samples. The large elongational viscosity of the polymer solution droplets suppressed large droplet deformations, resulting in less chaotic bouncing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.