Intramuscular fat (IMF) content and fatty acid composition affect the organoleptic quality and nutritional value of pork. A genome-wide association study was performed on 138 Duroc pigs genotyped with a 60k SNP chip to detect biologically relevant genomic variants influencing fat content and composition. Despite the limited sample size, the genome-wide association study was powerful enough to detect the association between fatty acid composition and a known haplotypic variant in SCD (SSC14) and to reveal an association of IMF and fatty acid composition in the LEPR region (SSC6). The association of LEPR was later validated with an independent set of 853 pigs using a candidate quantitative trait nucleotide. The SCD gene is responsible for the biosynthesis of oleic acid (C18:1) from stearic acid. This locus affected the stearic to oleic desaturation index (C18:1/C18:0), C18:1, and saturated (SFA) and monounsaturated (MUFA) fatty acids content. These effects were consistently detected in gluteus medius, longissimus dorsi, and subcutaneous fat. The association of LEPR with fatty acid composition was detected only in muscle and was, at least in part, a consequence of its effect on IMF content, with increased IMF resulting in more SFA, less polyunsaturated fatty acids (PUFA), and greater SFA/PUFA ratio. Marker substitution effects estimated with a subset of 65 animals were used to predict the genomic estimated breeding values of 70 animals born 7 years later. Although predictions with the whole SNP chip information were in relatively high correlation with observed SFA, MUFA, and C18:1/C18:0 (0.48–0.60), IMF content and composition were in general better predicted by using only SNPs at the SCD and LEPR loci, in which case the correlation between predicted and observed values was in the range of 0.36 to 0.54 for all traits. Results indicate that markers in the SCD and LEPR genes can be useful to select for optimum fatty acid profiles of pork.
Arachidonic acid (C20:4) is related to a wide range of biological effects including lipid homeostasis. The fatty acid desaturase-2 (FADS2) gene encodes for the delta-6-desaturase, which is involved in the biosynthesis of C20:4 from linoleic acid (C18:2). The purpose of this study was to characterise mutations in the promoter of the porcine FADS2, evaluating in particular the effect of one haplotype tagging polymorphism (rs321384923A > G) on the biosynthesis pathway of C20:4. A total of 1,192 Duroc barrows with records on fatty acid composition in muscle and subcutaneous fat were genotyped. Pigs carrying the A allele showed, irrespective of fat content, both enhanced FADS2 expression and higher C20:4 in muscle and exhibited increased ratios of C20:4 to C18:2 and of C20:4 to eicosadienoic acid (C20:2) in both muscle and adipose tissue. Despite the inverse relationship observed between C20:4 and fat content, the rs321384923 polymorphism had no impact on lean weight. It is concluded that the haplotype encompassing the rs321384923 polymorphism at the porcine FADS2 affects the n-6 fatty acid profile by specifically modifying the desaturation efficiency of C18:2 to C20:4 rather than by concomitant variations in C18:2 following changes in fat content.
A genomic region in pig chromosome 4 has been previously associated with higher viraemia levels and lower weight gain following porcine reproduction and respiratory syndrome virus (PRRSV) infection. The region includes the marker WUR1000125, a G>A polymorphism next to a putative polyadenylation site in the 3'-untranslated region (3'-UTR) of the guanylate-binding protein 1, interferon-induced (GBP1) gene. The protein encoded by GBP1 is a negative regulator of T-cell responses. We show here that GBP1 expression is lower in liver and tonsils of pigs carrying the WUR1000125-G allele due to differential allele expression (allele A expression is 1.9-fold higher than for allele G). We also show that the GBP1 gene has two active polyadenylation signals 421 bp apart and that polyadenylation usage is dependent on the WUR1000125 genotype. The distal site is the most prevalently used in all samples, but the presence of the A allele favours the generation of shorter transcripts from the proximal site. This is confirmed by a differential allele expression study in AG genotype liver and tonsil samples. The interaction between WUR1000125 and other mutations identified in the 5'- and 3'-UTR regions of this gene needs to be studied. In conclusion, our study indicates that the WUR1000125 mutation is associated with changes in the expression of the negative T-cell regulator GBP1 gene. However, the chromosome 4 locus for PRRSV viraemia levels and weight gain contains a cluster of four other GBP genes that remain to be studied as candidate genes for this QTL.
Background Intramuscular fat (IMF) content is a relevant trait for high-quality meat products such as dry-cured ham, but increasing IMF has the undesirable correlated effect of decreasing lean growth. Thus, there is a need to find selection criteria for IMF independent from lean growth. In pigs, the proportion of linoleic (C18:2) and arachidonic (C20:4) acids decline with fat deposition and therefore they can be considered as indicators of fatness. The aim of this research was to estimate the genetic variation for C18:2 and C20:4 in IMF and their genetic correlations with IMF and lean growth traits, with the objective to assess their potential as specific biomarkers of IMF. The analysis was conducted using a full-pedigreed Duroc resource line with 91,448 records of body weight and backfat thickness (BT) at 180 days of age and 1371 records of fatty acid composition in the muscle gluteus medius . Results The heritability estimates for C18:2 and C20:4 in IMF, whether expressed in absolute (mg/g of muscle) or in relative (mg/g of fatty acid) terms, as well as for their ratio (C20:4/C18:2), were high (> 0.40), revealing that the C18:2 to C20:4 pathway is subjected to substantial genetic influence. Litter effects were not negligible, with values ranging from 8% to 15% of the phenotypic variance. The genetic correlations of C18:2 and C20:4 with IMF and BT were negative (− 0.75 to − 0.66, for IMF, and − 0.64 to − 0.36, for BT), if expressed in relative values, but almost null (− 0.04 to 0.07), if expressed in absolute values, except for C18:2 with IMF, which was highly positive (0.88). The ratio of C20:4 to C18:2 also displayed a stronger genetic correlation with IMF (− 0.59) than with BT (− 0.10). Conclusions The amount of C18:2 in muscle can be used as an IMF-specific biomarker. Selection for the absolute amount of C18:2 is expected to deliver a similar response outcome as selection for IMF at restrained BT. Further genetic analysis of the C18:2 metabolic pathway may provide new insights into differential fat deposition among adipose tissues and on candidate genes for molecular markers targeting specifically for one of them.
The perilipins (PLIN) belong to a family of structural proteins that play a role regulating intracellular lipid storage and mobilization. Here, PLIN1 and PLIN2 have been evaluated as candidate genes for growth, carcass and meat quality traits in pigs. A sample of 607 Duroc pigs were genotyped for two single-nucleotide polymorphisms, one in intron 2 of the PLIN1 gene (JN860199:g.173G>A) and the other at the 3' untranslated region of the PLIN2 gene (GU461317:g.98G>A). Using a Bayesian approach, we have been able to find evidence of additive, dominant and epistatic associations of the PLIN1 and PLIN2 polymorphisms with early growth rate and carcass length. However, the major effects were produced by the dominant A allele at the PLIN2 polymorphism, which also affected the carcass lean weight. Thus, pigs carrying an additional copy of the A allele at the g.98G>A PLIN2 polymorphism had a probability of at least 98% of producing carcasses with heavier lean weight (+0.41 kg) and ham weight (+0.10 kg). The results obtained indicate that the PLIN2 polymorphism could be a useful marker for lean growth. In particular, it may help to reduce the undesired negative correlated response in lean weight to selection for increased intramuscular fat content, a common scenario in some Duroc lines involved in the production of high quality pork products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.