We use global and local hybrid (kinetic ions and fluid electrons) simulations to investigate the conditions under which foreshock bubbles (FBs) form and how their topology changes with solar wind conditions. FBs form as a result of the interaction between solar wind discontinuities and backstreaming ion beams in the foreshock. They consist of an outer shock and its associated sheath plasma and a low density high temperature core with low magnetic field strength. The structure of FBs is determined by the angle between the interplanetary magnetic field and the normal to the solar wind discontinuity. We show that interaction of rotational discontinuities with the foreshock during small angles between the interplanetary magnetic field and discontinuity normal results in the formation of a nearly spherical bubble with a radius that scales with the width of the foreshock. As this angle increases, FBs become more elongated and eventually become nearly planar structures with dimensions that scale with the length of the foreshock. Despite this transformation, the signatures of FBs in spacecraft time series data remain the same in agreement with the observations. Global simulation results show that FBs form when the solar wind flow speed corresponds to high or intermediate Alfvén Mach numbers (approximately >7 M A). In general, this is tied to the relative speed between the solar wind and ion beams and drop in density of the backstreaming ions.
The legend of Figure 5 was published incorrectly. The correct legend should read as follows: This error has now been rectified and the corrected article appears in this issue together with this corrigendum.The publishers wish to apologise for any inconvenience caused.
Using a three-dimensional (3-D) global-scale hybrid code, the Magnetospheric Multiscale (MMS) reconnection event around 02:13 UT on 18 November 2015, highlighted in the Geospace Environment Modeling (GEM) Dayside Kinetic Challenge, is simulated, in which the interplanetary magnetic field (IMF) points southward and the geomagnetic field has a −27°dipole tilt angle. Strong southward plasma jets are found near the magnetopause as a result of the dayside reconnection. Our results indicate that the subsolar magnetopause reconnection X line shifts from the subsolar point toward the Northern Hemisphere due to the effect of the tilted geomagnetic dipole angle, consistent with the MMS observation. Subsequently, the reconnection X lines or sites and reconnection flux ropes above the equator propagate northward along the magnetopause. The formation and global distribution of the X lines and the structure of the magnetopause reconnection are investigated in detail with the simulation. Mirror mode waves are also found in the middle of the magnetosheath downstream of the quasi-perpendicular shock where the plasma properties are consistent with the mirror instability condition. As a special outcome of the GEM challenge event, the spatial and temporal variations in reconnection, the electromagnetic power spectra, and the associated D-shaped ion velocity distributions in the simulated reconnection event are compared with the MMS observation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.