Partially acetylated chitosan oligosaccharides (paCOS) are potent biologics with many potential applications, and their bioactivities are believed to be dependent on their structure, i.e., their degrees of polymerization and acetylation, as well as their pattern of acetylation. However, paCOS generated via chemical N-acetylation or de-N-acetylation of GlcN or GlcNAc oligomers, respectively, typically display random patterns of acetylation, making it difficult to control and predict their bioactivities. In contrast, paCOS produced from chitin deacetylases (CDAs) acting on chitin oligomer substrates may have specific patterns of acetylation, as shown for some bacterial CDAs. However, compared to what we know about bacterial CDAs, we know little about the ability of fungal CDAs to produce defined paCOS with known patterns of acetylation. Therefore, we optimized the expression of a chitin deacetylase from the fungus Puccinia graminis f. sp. tritici in Escherichia coli. The best yield of functional enzyme was obtained as a fusion protein with the maltose-binding protein (MBP) secreted into the periplasmic space of the bacterial host. We characterized the MBP fusion protein from P. graminis (PgtCDA) and tested its activity on different chitinous substrates. Mass spectrometric sequencing of the products obtained by enzymatic deacetylation of chitin oligomers, i.e., tetramers to hexamers, revealed that PgtCDA generated paCOS with specific acetylation patterns of A-A-D-D, A-A-D-D-D, and A-A-D-D-D-D, respectively (A, GlcNAc; D, GlcN), indicating that PgtCDA cannot deacetylate the two GlcNAc units closest to the oligomer's nonreducing end. This unique property of PgtCDA significantly expands the so far very limited library of well-defined paCOS available to test their bioactivities for a wide variety of potential applications. IMPORTANCEWe successfully achieved heterologous expression of a fungal chitin deacetylase gene from the basidiomycete Puccinia graminis f. sp. tritici in the periplasm of E. coli as a fusion protein with the maltose-binding protein; this strategy allows the production of these difficult-to-express enzymes in sufficient quantities for them to be characterized and optimized through protein engineering. Here, the recombinant enzyme was used to produce partially acetylated chitosan oligosaccharides from chitin oligomers, whereby the pronounced regioselectivity of the enzyme led to the production of defined products with novel patterns of acetylation. This approach widens the scope for both the production and functional analysis of chitosan oligomers and thus will eventually allow the detailed molecular structure-function relationships of biologically active chitosans to be studied, which is essential for developing applications for these functional biopolymers for a circular bioeconomy, e.g., in agriculture, medicine, cosmetics, and food sciences.
Chitin is one of the most abundant renewable resources, and chitosans, the partially deacetylated derivatives of chitin, are among the most promising functional biopolymers, with superior material properties and versatile biological functionalities. Elucidating molecular structure-function relationships and cellular modes of action of chitosans, however, it is challenging due to the micro-heterogeneity and structural complexity of polysaccharides. Lately, it has become apparent that many of the biological activities of chitosan polymers, such as in agricultural plant disease protection or in mediating scar-free wound healing, may be attributed to oligomeric break-down products generated by the action of chitosanolytic hydrolases present in the target tissues, such as human chitotriosidase. Consequently, the focus of current research is shifting toward chitosan oligomers so that the availability of well-defined chitosan oligosaccharides (COS) becomes a bottleneck. Well-known ways of producing COS use physical and/or chemical means for the partial depolymerization of chitosan polymers, typically leading to broad mixtures of COS varying in their degrees of polymerization (DP) and acetylation (DA), and with more or less random patterns of acetylation (PAs). Even after chromatographic separation according to DP and DA, such mixtures are of limited value to elucidate structure-function relationships and modes of action. More recently, enzymatic means using chitinases and/or chitosanases, and sometimes chitin deacetylases, have been proposed as these can be more tightly controlled and yield slightly better defined mixtures of COS. An alternative would be chemical synthesis of COS which in principle would allow for full structural control, but protocols for it are lengthy, costly, and not yet well developed, and yields are low. Synthetic biology now allows to develop today's in vitro bio-refinery approaches into in vivo cell factory approaches for the biotechnological production of defined COS using recombinant microbial strains expressing chitin oligomer synthases and chitin oligomer deacetylases. In this review, we will describe the state-of-the-art of this cell factory approach, as a basis for upcoming developments. We will briefly describe traditional chemical protocols and enzymatic production of COS as a background to the more detailed presentation of what has been achieved through in vivo biosynthesis. We will only briefly describe those as a background to the more detailed presentation of what has been achieved through in vivo biosynthesis. We will also touch on the production of COS derivatives that has been achieved in this way, as these oligomers open up another plethora of potential applications when used as building blocks for defined biomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.