Two membrane subfractions, one enriched in GM3 ganglioside and the other containing caveolin, were separated from low density detergent-insoluble membrane fraction prepared by sucrose density gradient centrifugation of postnuclear fraction of mouse melanoma B16 cells. The GM3-enriched subfraction, separated by anti-GM3 monoclonal antibody DH2, contained sphingomyelin, cholesterol, c-Src, and Rho A but not caveolin. In contrast, the caveolin-containing subfraction, separated by anti-caveolin antibody, contained neither GM3, c-Src, nor Rho A but did contain glucosylceramide, Ras, a very small quantity of sphingomyelin, and a very large quantity of cholesterol. The GM3/c-Src-enriched membrane subfraction was characterized by (i) maintenance of GM3-dependent adhesion and (ii) susceptibility to being activated for signal transduction through GM3.32 P-Phosphorylation of c-Src (M r 60,000) together with two other components (M r 45,000 and 29,000) was enhanced in the fraction bound to dishes coated with asialo-GM2 (Gg3) or with anti-GM3 monoclonal antibody DH2, detected by incubation with [␥-32 P]ATP at 37°C for 5 min. GM3-dependent adhesion of B16 cells to Gg3-coated dishes and associated signaling were not reduced or abolished in the presence of either filipin or nystatin, which are cholesterol-binding reagents known to abolish caveolae structure and function. B16 melanoma cells incubated with filipin (0.16 -0.3 g/ml) or with nystatin (25 g/ml) for 30 min showed depletion of cholesterol in detergentinsoluble membrane fraction but were still capable of binding to Gg3-coated plate and capable of the associated signaling. Thus, the GM3-enriched subfraction, involved in cell adhesion and capable of sending signals through GM3, represents a membrane domain distinguishable from caveolin-containing subfraction or caveolae. This microdomain is hereby termed the "glycosphingolipid signaling domain" or "glycosignaling domain".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.