This work aims for utilizing human ocular motion for the self-sufficient power supply of a minimally invasive implantable monitoring system for intraocular pressure (IOP). With a proven piezoelectric functionality (d(33) > 5 pm/V), nanocrystalline thin films of aluminum nitride (AlN) provide a good capability for micromechanical energy harvesting (EH) in medical applications. Many d31-mode microcantilever architectures are poorly suited for human-induced EH: Resonant mass-spring-damper systems are tested under high, narrow-band excitation frequencies. However, human motions, e.g. vibrations of eyeballs are marked by their low frequency, unpredictable, mainly aperiodic and time-varying signature. Different vibration types and directions are 3-dimensionally superimposed. Saccadic eye movements are favorable for inertial microgenerators because of their high dynamic loading w=1000°/s). Our generator concept (symmetric active/active-parallel-bimorph cantilever) enables a high structural compliance by maximizing the piezoactive volume at very low cantilever thicknesses (<1 µm). An increased length and seismic mass enable an effective excitation by low-level aperiodic vibrations such as saccadic acceleration impulses. Analytic calculations and FEA-simulations investigate the potential distribution and transient response of different bimorph structures (length 200- 1000 µm, width 20-200 µm) on broadband vibrations. First released monomorph and bimorph structures show very low resonant frequencies and an adequate robustness
In this work, we show that thin biocompatible AlN films reveal a stable, frequency independent piezoresponse demonstrating a good applicability for implantable micro-generators. It was demonstrated that although more power is generated by resonant (tensile stressed) systems, e.g. cantilevers and planar membranes, the non-resonant (compressive stressed) systems, e.g. corrugated membranes, are preferable for this purpose due to the generation of sufficient power at low-frequency aperiodic vibrations and at very low accelerations
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.