In this article the Tomographic Iterative GPU-based Reconstruction (TIGRE) Toolbox, a MATLAB/ CUDA toolbox for fast and accurate 3D x-ray image reconstruction, is presented. One of the key features is the implementation of a wide variety of iterative algorithms as well as FDK, including a range of algorithms in the SART family, the Krylov subspace family and a range of methods using total variation regularization. Additionally, the toolbox has GPU-accelerated projection and back projection using the latest techniques and it has a modular design that facilitates the implementation of new algorithms. We present an overview of the structure and techniques used in the creation of the toolbox, together with two usage examples. The TIGRE Toolbox is released under an open source licence, encouraging people to contribute.
The term beta-beam has been coined for the production of a pure beam of electron neutrinos or their antiparticles through the decay of radioactive ions circulating in a storage ring. This concept requires radioactive ions to be accelerated to a Lorentz gamma of 150 for 6 He and 60 for 18 Ne. The neutrino source itself consists of a storage ring for this energy range, with long straight sections in line with the experiment(s). Such a decay ring does not exist at CERN today, nor does a high-intensity proton source for the production of the radioactive ions. Nevertheless, the existing CERN accelerator infrastructure could be used as this would still represent an important saving for a betabeam facility. This paper outlines the first study, while some of the more speculative ideas will need further investigations.
Coupling impedances and wakefields are fundamental quantities to characterize the electromagnetic interaction of a particle beam with the surrounding environment. In particular, collective effects, triggered by these self-induced fields, may play an important role in beam stability and machine performance. Within the framework of the LHC Injectors Upgrade project, since a significantly higher beam intensity is planned for the CERN Proton Synchrotron, wakefields are expected to increase their influence on the beam dynamics, and their evaluation is becoming important. In this paper we present the results of recent measurements of the longitudinal broadband coupling impedance by means of the incoherent quadrupole synchrotron frequency shift as a function of beam intensity. A detailed evaluation of the contribution of several machine installations to the total impedance budget is also presented and compared with the measurements. Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI
Stationary, self-consistent, and localized longitudinal density perturbations on an unbunched chargedparticle beam, which are solutions of the nonlinearized Vlasov-Poisson equation, have recently received some attention. In particular, we address the case that space charge is the dominant longitudinal impedance and the storage ring operates below transition energy so that the negative mass instability is not an explanation for persistent beam structure. Under the customary assumption of a bell-shaped steadystate distribution, about which the expansion is made, the usual wave theory of Keil and Schnell for perturbations on unbunched beams predicts that self-sustaining perturbations are possible only (below transition) if the impedance is inductive (or resistive) or if the bell shape is inverted. Space charge gives a capacitive impedance. Nevertheless, we report numerous experimental measurements made at the CERN Proton Synchrotron Booster that plainly show the longevity of holelike structures in coasting beams. We shall also report on computer simulations of boosterlike beams that provide compelling evidence that it is space-charge force which perpetuates the holes. We shall show that the localized solitonlike structures, i.e., holes, decouple from the steady-state distribution and that they are simple solutions of the nonlinearized time-independent Vlasov equation. We have derived conditions for stationarity of holes that satisfy the requirement of self-consistency; essentially, the relation between the momentum spread and depth of the holes is given by the Hamiltonian -with the constraint that the phase-space density be high enough to support the solitons. The stationarity conditions have scaling laws similar to the Keil-Schnell criteria except that the charge and momentum spread of the hole replaces that of the beam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.