Sequencing-based studies have identified novel risk genes associated with severe epilepsies and revealed an excess of rare deleterious variation in less-severe forms of epilepsy. To identify the shared and distinct ultra-rare genetic risk factors for different types of epilepsies, we performed a whole-exome sequencing (WES) analysis of 9,170 epilepsy-affected individuals and 8,436 controls of European ancestry. We focused on three phenotypic groups: severe developmental and epileptic encephalopathies (DEEs), genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We observed that compared to controls, individuals with any type of epilepsy carried an excess of ultra-rare, deleterious variants in constrained genes and in genes previously associated with epilepsy; we saw the strongest enrichment in individuals with DEEs and the least strong in individuals with NAFE. Moreover, we found that inhibitory GABA A receptor genes were enriched for missense variants across all three classes of epilepsy, whereas no enrichment was seen in excitatory receptor genes. The larger gene groups for the GABAergic pathway or cation channels also showed a significant mutational burden in DEEs and GGE. Although no single gene surpassed exome-wide significance among individuals with GGE or NAFE, highly constrained genes and genes encoding ion channels were among the lead associations; such genes included CACNA1G, EEF1A2, and GABRG2 for GGE and LGI1, TRIM3, and GABRG2 for NAFE. Our study, the largest epilepsy WES study to date, confirms a convergence in the genetics of severe and less-severe epilepsies associated with ultra-rare coding variation, and it highlights a ubiquitous role for GABAergic inhibition in epilepsy etiology.
Cytogenic testing is routinely applied in most neurological centres for severe paediatric epilepsies. However, which characteristics of copy number variants (CNVs) confer most epilepsy risk and which epilepsy subtypes carry the most CNV burden, have not been explored on a genome-wide scale. Here, we present the largest CNV investigation in epilepsy to date with 10 712 European epilepsy cases and 6746 ancestry-matched controls. Patients with genetic generalized epilepsy, lesional focal epilepsy, non-acquired focal epilepsy, and developmental and epileptic encephalopathy were included. All samples were processed with the same technology and analysis pipeline. All investigated epilepsy types, including lesional focal epilepsy patients, showed an increase in CNV burden in at least one tested category compared to controls. However, we observed striking differences in CNV burden across epilepsy types and investigated CNV categories. Genetic generalized epilepsy patients have the highest CNV burden in all categories tested, followed by developmental and epileptic encephalopathy patients. Both epilepsy types also show association for deletions covering genes intolerant for truncating variants. Genome-wide CNV breakpoint association showed not only significant loci for genetic generalized and developmental and epileptic encephalopathy patients but also for lesional focal epilepsy patients. With a 34-fold risk for developing genetic generalized epilepsy, we show for the first time that the established epilepsy-associated 15q13.3 deletion represents the strongest risk CNV for genetic generalized epilepsy across the whole genome. Using the human interactome, we examined the largest connected component of the genes overlapped by CNVs in the four epilepsy types. We observed that genetic generalized epilepsy and non-acquired focal epilepsy formed disease modules. In summary, we show that in all common epilepsy types, 1.5–3% of patients carry epilepsy-associated CNVs. The characteristics of risk CNVs vary tremendously across and within epilepsy types. Thus, we advocate genome-wide genomic testing to identify all disease-associated types of CNVs.
Transitional mutations at CpG dinucleotides account for approximately a third of all point mutations. These mutations probably arise through spontaneous deamination of 5-methylcytosine. Studies of CpG mutation rates in disease-linked genes, such as factor VIII and FGFR3, have indicated that they more frequently originate in male than in female germ cells. It has been speculated that these sex-biased mutation rates might be a consequence of sex-specific methylation differences between the female and the male germ lines. Using the bisulfite-based genomic-sequencing method, we investigated the methylation status of the human factor VIII and FGFR3 genes in mature male and female germ cells. With the exception of a single CpG, both genes were found to be equally and highly methylated in oocytes and spermatocytes. Whereas these observations strongly support the notion that DNA methylation is the major determining factor for recurrent CpG germ-line mutations in patients with hemophilia and achondroplasia, the higher mutation rate in the male germ line is apparently not a simple reflection of sex-specific methylation differences.
Summary. DNA-based diagnosis of haemophilia A has previously been carried out by linkage analysis using two highly informative markers, Hind III RFLP and St14 VNTR, for affected Turkish families. In the present study the number and frequency of the microsatellite alleles at introns 13 and 22 in the factor VIII (FVIII) gene were analysed in order to increase the rate of informative females and accuracy of linkage analysis. Six alleles were observed at both loci. The two most frequent alleles of each locus were the same as the two common alleles found in Anglo-Americans. The comparison of heterozygosity of both microsatellite loci showed that the Turkish population is slightly less polymorphic than Anglo-Americans but more polymorphic than Chinese, Slavs and Uzbekians. The additional use of the two microsatellite repeat polymorphisms with the previously established informative markers has been accepted as the most effective strategy in DNA diagnosis by linkage analysis for the assessment of haemophilia A carriers and affected fetuses in the Turkish population. The modifications adopted in this study for the multiplex PCR analysis of the microsatellite repeat polymorphism eliminated the use of radioactivity and sequencing gels, reducing cost and labour.
Summary. The Xba I polymorphic site in the factor VIII gene is present in the int22h-1 region which is found in two other copies (int22h-2 and int22h-3) distal to the gene. Previously the polymorphic status of the Xba I locus was studied by either Southern blot or PCR that amplified all three copies. Here we report the use of a long PCR that specifically amplifies the intragenic site in intron 22, making use of this marker an easy and reliable assay. Moreover, about 25% of previously uninformative Turkish haemophilia A families examined with three markers proved to be informative for linkage analysis, using the Xba I polymorphism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.