A backward computation method has been developed to accelerate modelling of the critical state magnetization current in a staggered-array bulk high-temperature superconducting (HTS) undulator. The key concept is as follows: (i) a large magnetization current is first generated on the surface of the HTS bulks after rapid field-cooling (FC) magnetization; (ii) the magnetization current then relaxes inwards step-by-step obeying the critical state model; (iii) after tens of backward iterations the magnetization current reaches a steady state. The simulation results show excellent agreement with the
H
-formulation method for both the electromagnetic and electromagnetic-mechanical coupled analyses, but with significantly faster computation speed. The simulation results using the backward computation method are further validated by the recent experimental results of a five-period Gd–Ba–Cu–O (GdBCO) bulk undulator. Solving the finite element analysis (FEA) model with 1.8 million degrees of freedom (DOFs), the backward computation method takes less than 1.4 h, an order of magnitude or higher faster than other state-of-the-art numerical methods. Finally, the models are used to investigate the influence of the mechanical stress on the distribution of the critical state magnetization current and the undulator field along the central axis.
The Insertion Device group of the Paul Scherrer Institute has started an R&D program on a high temperature superconducting undulator to reduce the period length and increase the undulator's magnetic field well beyond the present capability. Simulation results for a 10 mm period and 4 mm magnetic gap staggered array of GdBCO bulks predict peak magnetic field above 2 T. Building on the existing working principle of undulator design and simulated performance, the first experimental results of a 5 period 6.0 mm gap short undulator measured in the new test facility available at the University of Cambridge will be presented together with details of the experimental setup and sample preparation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.