We determined the incidence of ingestion of 4 autotrophic dinoflagellates and 1 heterotrophic dinoflagellate by first stage larvae of 4 species of crabs. Crab species were 2 winter spawning brachyurans Cancer magister and C. oregonensis, 1 summer spawning brachyuran Hemigrapsus oregonensis, and 1 anomuran Rhinolithodes wosnessenskii. Autotrophic dinoflagellate prey were Prorocentrum micans, which sustain survival of crab larvae in laboratory culture, and 2 species of Alexandrium spp. that do not. P. micans were ingested by virtually all larvae of all 4 crab species, while both toxic and non-toxic strains of Alexandrium were almost never ingested. Results of rearing experiments generally confirmed that larvae were receiving no nutritional contribution from Alexandrium spp. prey. When brachyuran larvae were presented with mixtures of P. micans and Alexandrium spp. in defined ratios, virtually all larvae ingested both types of algal prey. Suspending Alexandrium cells in P. micans exudate did not enhance their ingestion nor did suspending P. micans in Alexandrium exudate reduce ingestion. Ingestion of plastic beads was low (<12%) except when offered in combination with P. micans cells (58%). H. oregonensis larvae ingested the heterotrophic dinoflagellate Noctiluca scintillans that had previously fed on either P. micans or one of the toxic Alexandrium strains, with no apparent preference. Results suggest the presence of a positive ingestion stimulus provided by P. micans and N. scintillans, but its absence in Alexandrium spp. Absence of ingestion of Alexandrium was not related to the presence of toxins. The ingestion stimulus appears to reside on the prey cell surface. Although crab larvae appear able to discriminate among algal prey, non-discriminate feeding seems likely to occur in mixed prey assemblages in which at least some prey possess the positive ingestion cue, perhaps permitting rapid ingestion of available particles when dense prey patches are encountered in an otherwise sparse prey environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.