BackgroundThe aims of this study were to investigate Salmonella contamination in broiler chicken farms and slaughterhouses, to assess the antibiotic resistance profile in avian and human Salmonella isolates, and to evaluate the relationship between avian and human Extended Spectrum β-Lactamase (ESBL)-producing isolates. Salmonella was screened in different sample matrices collected at thirty-two chicken farms and five slaughterhouses. The human isolates were recovered from clinical specimens at the University Teaching Hospital of Constantine (UTH). All suspected colonies were confirmed by MALDI-TOF (Matrix Assisted Laser Desorption Ionization Time OF light) and serotyped. Susceptibility testing against 13 antibiotics including, amoxicillin/clavulanic acid, ticarcillin, cefoxitin, cefotaxime, aztreonam, imipenem, ertapenem, gentamicin, amikacin, ciprofloxacin, colistin, trimethoprim/sulfamethoxazole and fosfomycin, was performed using the disk diffusion method on Mueller-Hinton agar. ESBL-production was screened by the double-disk synergy test and confirmed by molecular characterization using PCR (polymerase chain reaction) amplification and sequencing of ESBL encoding genes. Clonality of the avian and human strains was performed using the Multi Locus Sequencing Typing method (MLST).ResultsForty-five isolated avian Salmonella strains and 37 human collected ones were studied. Five S. enterica serotypes were found in avian isolates (mainly Kentucky) and 9 from human ones (essentially Infantis). 51.11% and 26.6% of the avian isolates were resistant to ciprofloxacin and cefotaxime, respectively, whereas human isolates were less resistant to these antibiotics (13.5% to ciprofloxacin and 16.2% to cefotaxime). Eighteen (12 avian and 6 human) strains were found to produce ESBLs, which were identified as bla CTX-M-1 (n = 12), bla CTX-M-15 (n = 5) and bla TEM group (n = 8). Interestingly, seven of the ESBL-producing strains (5 avian and 2 human) were of the same ST (ST15) and clustered together, suggesting a common origin.ConclusionThe results of the combined phenotypic and genotypic analysis found in this study suggest a close relationship between human and avian strains and support the hypothesis that poultry production may play a role in the spread of multidrug-resistant Salmonella in the human community within the study region.Electronic supplementary materialThe online version of this article (doi:10.1186/s12917-017-1050-3) contains supplementary material, which is available to authorized users.
Aim:The aim of this study was to provide information on the prevalence of Salmonella serotypes and to identify risk factors for Salmonella spp. contamination in broiler chicken farms and slaughterhouses in the northeast of Algeria.Materials and Methods:This study was conducted on 32 poultry farms and five slaughterhouses in the province of Skikda (northeastern Algeria). A questionnaire was answered by the poultry farmers and slaughterhouses’ managers. Biological samples (cloacal swabs, droppings, caeca, livers, and neck skins) and environmental ones (water, feed, surface wipes, rinsing water, and sticking knife swabbing) were taken to assess the Salmonella contamination status.Results:Nearly 34.37% of the poultry farms and all the slaughterhouses were contaminated with Salmonella. The isolated Salmonella strains belonged to two major serotypes: Kentucky and Heidelberg followed by Enteritidis, Virginia, and Newport. There was an evident heterogeneous distribution of serotypes in poultry farms and slaughterhouses. Only one factor (earth floor) was significantly associated with Salmonella contamination in poultry houses (p<0.05).Conclusion:A high prevalence rate of Salmonella contamination was found in poultry farms and slaughterhouses in Skikda region. These results showed the foremost hazardous role of poultry production in the spread and persistence of Salmonella contamination in the studied region.
Enzootic abortion of ewes is one of the most serious health problems in sheep flocks worldwide. It has a significant economic impact because abortion, decrease in milk production and weak lambs. Besides, the bacteria is zoonotic. A cross-sectional study was conducted to determine the seroprevalence and risk factors associated with Chlamydia abortus infection in 552 ewes in Constantine using a C. abortus-specific indirect ELISA kit. Chlamydial DNA was investigated in ten ovine fetuses and eight placentas using PCR- restriction fragment length polymorphism (RFLP) and DNA sequencing. The study concluded that 7.2 % of ewes were seropositive and 33.3 % of sheep flocks had at least one seropositive ewe. Adjacent farmworker visits (OR = 7.667, 95 % CI (OR) = 2.307; 27.203) was defined as a risk factor. Deliveries of weak lambs (OR = 2.920, 95 % CI (OR) = 1.022; 8.342) and septicemia in lambs (OR = 9.971, 95 % CI (OR) = 2.383; 41.713) were significantly associated with chlamydial infection. PCR-RFLP analysis revealed positive signals to C. abortus in six fetuses and four placentas. Sequencing of the omp2 gene revealed that the Algerian strain is 96 % similar with C. abortus FAS strain. C. abortus plays a major role in abortion in northeastern Algeria. Appropriate control measures must be implemented to reduce economic losses and to avoid human contamination.
A cross-sectional study was carried out to estimate prevalence of Chlamydophila spp. antibodies and to investigate risk factors associated with chlamydial infection in 552 ewes between March 2011 and January 2012 in the province of Constantine. Anti-Chlamydophila antibodies were detected using an indirect enzyme-linked immunosorbent assay kit in 24.5% of examined sera. Of the herds, 70.4% had at least one seropositive animal. A pretested structured questionnaire was administered in order to collect information on individual animal health and herd management practices. Chi-square analysis and multivariable logistic regression model were used to identify risk factors related to Chlamydophila seropositivity. Univariable analysis revealed 17 variables with p < 0.25 that were offered to the multivariable logistic regression model which in turn identified 12-23 months age group (OR = 5.903, 95% CI (OR) = 1.690; 20.618) and not using disinfectants (OR = 2.099, 95% CI (OR) = 1.314; 8.065) as risk factors for Chlamydophila spp. seropositivity. Moreover, occurrence of stillbirth problem (OR = 3.682, 95% CI (OR) = 1.825; 7.430) and 5-10% mortality rate in young lambs (OR = 2.584, 95% CI (OR) = 1.058; 6.310) were significantly associated with seropositivity to Chlamydophila spp. On the other hand, availability of veterinary service was identified as a protective factor (OR = 0.161, 95% CI (OR) = 0.051; 0.511).
Q fever is a zoonotic disease caused by the rickettsia-like Coxiella burnetii and leads to abortions and decreased reproductive performances in domestic ruminants. A serological survey, using ELISA test, was conducted to assess the prevalence of this infection in 226 ewes belonging to 39 flocks localized in Constantine (North-eastern Algeria). A pretested questionnaire has been submitted to farmers/shepherds to collect information related to relevant risk factors. Results revealed the presence of C. burnetii antibodies in 12.4% (95% CI: 8.08%−16.72%) of individual animals while 35.9% (95% CI: 21.20%−52.82%) of sampled flocks accounted at least one seropositive ewe. Significant causative associations were observed for origin of animals (χ2=14.29, P=0.001), vaccination against enterotoxaemia (χ2=12.12, P=0.002) and pox (χ2=5.30, P=0.025), access to the farm by foreign visitors (χ2=10.87, P=0.004), farmers/shepherds’ visits to other farms (χ2=6.31, P=0.021), disinfection frequency (χ2=7.98, P=0.046), pest infestation within farms (χ2=9.55, P=0.049) and abortion history (χ2=5.54, P=0.029). This recorded prevalence of Coxiella infection would indicate a possible responsibility of this agent in causing abortion and reproductive failures in the tested flocks. Implementing active surveillance programs and further investigations using more accurate analyses and including large samples of more animal species from several provinces are needed to eluci date the real occurrence and dynamics of this infection in the national livestock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.